Dept. of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany.
Dept. of Protein Evolution, Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany.
J Struct Biol. 2018 Dec;204(3):380-387. doi: 10.1016/j.jsb.2018.10.010. Epub 2018 Oct 26.
Computational design with supersecondary structures as building blocks has proven effective in the construction of new proteins with controlled geometries. So far, this approach has primarily exploited amplification, effectively harnessing the internal folding propensity of self-compatible fragments to achieve sufficient enthalpy for folding. Here we exploit an interface-driven strategy to depart from the repeat design realm, constructing an asymmetric, globular domain from heterologous supersecondary structures. We report the successful design of a dRP lyase domain fold, which agrees with the experimental NMR structure at atomic accuracy (backbone RMSD of 0.94 Å). Our results show that the residual folding information within conserved fragments, combined with efficient interface-directed sampling, can effectively yield globular proteins with novel sequences and biophysical properties.
基于超二级结构构建模块的计算设计已被证明在构建具有可控几何形状的新型蛋白质方面非常有效。到目前为止,这种方法主要利用了扩增,有效地利用了自相容片段的内部折叠倾向来获得足够的折叠焓。在这里,我们利用一种界面驱动的策略来摆脱重复设计领域,从异源超二级结构构建一个不对称的球状结构域。我们报告了成功设计了一个 dRP 裂解酶结构域折叠,其与实验 NMR 结构具有原子精度一致(骨架 RMSD 为 0.94Å)。我们的结果表明,保守片段内的残留折叠信息,结合有效的界面导向采样,可以有效地产生具有新颖序列和生物物理特性的球状蛋白质。