Suppr超能文献

相似文献

1
De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative Adversarial Networks.
J Chem Inf Model. 2020 Dec 28;60(12):5667-5681. doi: 10.1021/acs.jcim.0c00593. Epub 2020 Sep 30.
2
Rectified Wasserstein Generative Adversarial Networks for Perceptual Image Restoration.
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3648-3663. doi: 10.1109/TPAMI.2022.3185316. Epub 2023 Feb 3.
4
Network-principled deep generative models for designing drug combinations as graph sets.
Bioinformatics. 2020 Jul 1;36(Suppl_1):i445-i454. doi: 10.1093/bioinformatics/btaa317.
6
Towards Generating Realistic Wrist Pulse Signals Using Enhanced One Dimensional Wasserstein GAN.
Sensors (Basel). 2023 Jan 28;23(3):1450. doi: 10.3390/s23031450.
7
Generative Adversarial Networks for De Novo Molecular Design.
Mol Inform. 2021 Oct;40(10):e2100045. doi: 10.1002/minf.202100045. Epub 2021 Jul 6.
8
Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising.
IEEE Trans Radiat Plasma Med Sci. 2021 Mar;5(2):213-223. doi: 10.1109/trpms.2020.3025071. Epub 2020 Sep 21.
9
Exploring "dark-matter" protein folds using deep learning.
Cell Syst. 2024 Oct 16;15(10):898-910.e5. doi: 10.1016/j.cels.2024.09.006. Epub 2024 Oct 8.
10
Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification.
IEEE Trans Cybern. 2020 Jul;50(7):3318-3329. doi: 10.1109/TCYB.2019.2915094. Epub 2019 May 30.

引用本文的文献

2
AlphaFold distillation for inverse protein design.
Sci Rep. 2025 Jul 1;15(1):21743. doi: 10.1038/s41598-025-00436-1.
3
A review of machine learning methods for imbalanced data challenges in chemistry.
Chem Sci. 2025 Apr 22;16(18):7637-7658. doi: 10.1039/d5sc00270b. eCollection 2025 May 7.
5
Leveraging large language models for peptide antibiotic design.
Cell Rep Phys Sci. 2025 Jan 15;6(1). doi: 10.1016/j.xcrp.2024.102359. Epub 2024 Dec 31.
7
Machine Learning Methods in Protein-Protein Docking.
Methods Mol Biol. 2024;2780:107-126. doi: 10.1007/978-1-0716-3985-6_7.
9
Diffusion models in bioinformatics and computational biology.
Nat Rev Bioeng. 2024 Feb;2(2):136-154. doi: 10.1038/s44222-023-00114-9. Epub 2023 Oct 27.

本文引用的文献

1
Protein sequence design with a learned potential.
Nat Commun. 2022 Feb 8;13(1):746. doi: 10.1038/s41467-022-28313-9.
2
Fast and Flexible Protein Design Using Deep Graph Neural Networks.
Cell Syst. 2020 Oct 21;11(4):402-411.e4. doi: 10.1016/j.cels.2020.08.016. Epub 2020 Sep 23.
3
DenseCPD: Improving the Accuracy of Neural-Network-Based Computational Protein Sequence Design with DenseNet.
J Chem Inf Model. 2020 Mar 23;60(3):1245-1252. doi: 10.1021/acs.jcim.0c00043. Epub 2020 Mar 9.
4
Improved protein structure prediction using potentials from deep learning.
Nature. 2020 Jan;577(7792):706-710. doi: 10.1038/s41586-019-1923-7. Epub 2020 Jan 15.
5
NetGO: improving large-scale protein function prediction with massive network information.
Nucleic Acids Res. 2019 Jul 2;47(W1):W379-W387. doi: 10.1093/nar/gkz388.
6
De novo design of potent and selective mimics of IL-2 and IL-15.
Nature. 2019 Jan;565(7738):186-191. doi: 10.1038/s41586-018-0830-7. Epub 2019 Jan 9.
7
Asymmetric protein design from conserved supersecondary structures.
J Struct Biol. 2018 Dec;204(3):380-387. doi: 10.1016/j.jsb.2018.10.010. Epub 2018 Oct 26.
9
EEG Data Augmentation for Emotion Recognition Using a Conditional Wasserstein GAN.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2535-2538. doi: 10.1109/EMBC.2018.8512865.
10
iCFN: an efficient exact algorithm for multistate protein design.
Bioinformatics. 2018 Sep 1;34(17):i811-i820. doi: 10.1093/bioinformatics/bty564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验