Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany.
Max Planck Institute for Biology, 72076, Tübingen, Germany.
Nat Commun. 2022 May 26;13(1):2948. doi: 10.1038/s41467-022-30157-2.
Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.
蛋白质疗法经常面临重大挑战,包括复杂的生产、不稳定性、较差的溶解度和聚集。从头设计蛋白质可以轻易解决这些挑战。在这里,我们展示了拓扑重构策略的实用性,该策略从粒细胞集落刺激因子 (G-CSF) 结构出发,设计新型粒系生成蛋白。我们通过重新排列序列并对其进行优化来改变蛋白质折叠,使其适应新的折叠。通过测试四个设计,我们得到了两个具有纳摩尔活性的设计,其中最活跃的设计具有高度热稳定性和抗蛋白酶性,并且与设计结构达到原子精度匹配。虽然这些设计与天然 G-CSF 在序列和结构上有很大的不同,但它们在将原代人类造血干细胞分化为成熟中性粒细胞方面表现出特定的活性。这些设计在体内也表现出显著和特定的活性。我们的拓扑重构方法在很大程度上独立于序列或结构背景,因此适用于广泛的蛋白质靶标。