Suppr超能文献

活细胞中肌动蛋白探针的对流诱导偏析。

Convection-Induced Biased Distribution of Actin Probes in Live Cells.

机构信息

Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Medicine, Kyoto Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan.

Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto Japan.

出版信息

Biophys J. 2019 Jan 8;116(1):142-150. doi: 10.1016/j.bpj.2018.11.022. Epub 2018 Nov 22.

Abstract

Fluorescent markers that bind endogenous target proteins are frequently employed for quantitative live-cell imaging. To visualize the actin cytoskeleton in live cells, several actin-binding probes have been widely used. Among them, Lifeact is the most popular probe with ideal properties, including fast exchangeable binding kinetics. Because of its fast kinetics, Lifeact is generally believed to distribute evenly throughout cellular actin structures. In this study, however, we demonstrate misdistribution of Lifeact toward the rear of lamellipodia where actin filaments continuously move inward along the retrograde flow. Similarly, phalloidin showed biased misdistribution toward the rear of lamellipodia in live cells. We show evidence of convection-induced misdistribution of actin probes by both experimental data and physical models. Our findings warn about the potential error arising from the use of target-binding probes in quantitative live imaging.

摘要

荧光标记物经常被用于结合内源性靶蛋白的定量活细胞成像。为了可视化活细胞中的肌动蛋白细胞骨架,已经广泛使用了几种肌动蛋白结合探针。其中,Lifeact 是最受欢迎的探针,具有理想的特性,包括快速可交换的结合动力学。由于其快速的动力学,Lifeact 通常被认为均匀分布在细胞的肌动蛋白结构中。然而,在这项研究中,我们证明了 Lifeact 在向侧翼的后端的错误分布,在那里肌动蛋白丝沿着逆行流不断向内移动。同样,鬼笔环肽在活细胞中也向侧翼的后端显示出偏向的错误分布。我们通过实验数据和物理模型提供了对流引起的肌动蛋白探针错误分布的证据。我们的发现警告了在定量活细胞成像中使用靶结合探针可能产生的潜在误差。

相似文献

1
Convection-Induced Biased Distribution of Actin Probes in Live Cells.
Biophys J. 2019 Jan 8;116(1):142-150. doi: 10.1016/j.bpj.2018.11.022. Epub 2018 Nov 22.
2
Comparative analysis of tools for live cell imaging of actin network architecture.
Bioarchitecture. 2014;4(6):189-202. doi: 10.1080/19490992.2014.1047714. Epub 2015 Aug 28.
4
Localization and dynamics of nonfilamentous actin in cultured cells.
J Cell Biol. 1993 Oct;123(1):173-81. doi: 10.1083/jcb.123.1.173.
5
Structure of the Lifeact-F-actin complex.
PLoS Biol. 2020 Nov 20;18(11):e3000925. doi: 10.1371/journal.pbio.3000925. eCollection 2020 Nov.
6
8
Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins.
Nat Cell Biol. 2016 Jun;18(6):676-83. doi: 10.1038/ncb3351. Epub 2016 May 9.
9
Designed Ankyrin Repeat Proteins as Actin Labels of Distinct Cytoskeletal Structures in Living Cells.
ACS Nano. 2024 Mar 26;18(12):8919-8933. doi: 10.1021/acsnano.3c12265. Epub 2024 Mar 15.
10
Dendritic effects of genetically encoded actin-labeling probes in cultured hippocampal neurons.
Mol Biol Cell. 2023 Jun 1;34(7):br8. doi: 10.1091/mbc.E22-08-0331. Epub 2023 Mar 29.

引用本文的文献

1
Shear Stress Induces Concentration Gradient Distributions of Membrane Proteins in Live Cells.
bioRxiv. 2025 Aug 29:2025.08.27.672548. doi: 10.1101/2025.08.27.672548.
2
Cryo-ET of actin cytoskeleton and membrane structure in lamellipodia formation using optogenetics.
iScience. 2025 Apr 24;28(6):112529. doi: 10.1016/j.isci.2025.112529. eCollection 2025 Jun 20.
4
Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration.
Nat Commun. 2025 Feb 6;16(1):1414. doi: 10.1038/s41467-024-55510-5.
5
Designed Ankyrin Repeat Proteins as Actin Labels of Distinct Cytoskeletal Structures in Living Cells.
ACS Nano. 2024 Mar 26;18(12):8919-8933. doi: 10.1021/acsnano.3c12265. Epub 2024 Mar 15.
6
Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin.
Nat Commun. 2023 Dec 20;14(1):8468. doi: 10.1038/s41467-023-44018-z.
7
Fidgetin-like 2 depletion enhances cell migration by regulating GEF-H1, RhoA, and FAK.
Biophys J. 2023 Sep 19;122(18):3600-3610. doi: 10.1016/j.bpj.2022.12.018. Epub 2022 Dec 15.
8
A two-step search and run response to gradients shapes leukocyte navigation in vivo.
J Cell Biol. 2022 Aug 1;221(8). doi: 10.1083/jcb.202103207. Epub 2022 Jun 22.
9
Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with isotope labeling.
RSC Adv. 2020 Apr 28;10(28):16679-16686. doi: 10.1039/d0ra02803g. eCollection 2020 Apr 23.

本文引用的文献

1
Myosin-dependent actin stabilization as revealed by single-molecule imaging of actin turnover.
Mol Biol Cell. 2018 Aug 8;29(16):1941-1947. doi: 10.1091/mbc.E18-01-0061. Epub 2018 May 30.
2
Actin Turnover in Lamellipodial Fragments.
Curr Biol. 2017 Oct 9;27(19):2963-2973.e14. doi: 10.1016/j.cub.2017.08.066. Epub 2017 Sep 28.
4
Actin visualization at a glance.
J Cell Sci. 2017 Feb 1;130(3):525-530. doi: 10.1242/jcs.189068. Epub 2017 Jan 12.
6
Wide and high resolution tension measurement using FRET in embryo.
Sci Rep. 2016 Jun 23;6:28535. doi: 10.1038/srep28535.
7
Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins.
Nat Cell Biol. 2016 Jun;18(6):676-83. doi: 10.1038/ncb3351. Epub 2016 May 9.
8
Comparative analysis of tools for live cell imaging of actin network architecture.
Bioarchitecture. 2014;4(6):189-202. doi: 10.1080/19490992.2014.1047714. Epub 2015 Aug 28.
9
Multitarget super-resolution microscopy with high-density labeling by exchangeable probes.
Nat Methods. 2015 Aug;12(8):743-6. doi: 10.1038/nmeth.3466. Epub 2015 Jul 6.
10
Actin flows mediate a universal coupling between cell speed and cell persistence.
Cell. 2015 Apr 9;161(2):374-86. doi: 10.1016/j.cell.2015.01.056. Epub 2015 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验