Laboratory of Biofunctional Chemistry, Faculté de Pharmacie - UMR 7199, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France.
Laboratoire de Chimie Biologique et Applications Thérapeutiques, Institut de Chimie - UMR 7177, Université de Strasbourg, CNRS, 4 rue Blaise Pascal, 67070, Strasbourg, France.
Sci Rep. 2018 Dec 17;8(1):17892. doi: 10.1038/s41598-018-35586-y.
As multidrug resistant pathogenic microorganisms are a serious health menace, it is crucial to continuously develop novel medicines in order to overcome the emerging resistance. The methylerythritol phosphate pathway (MEP) is an ideal target for antimicrobial development as it is absent in humans but present in most bacteria and in the parasite Plasmodium falciparum. Here, we report the synthesis and the steady-state kinetics of a novel potent inhibitor (MEPN) of Escherichia coli YgbP/IspD, the third enzyme of the MEP pathway. MEPN inhibits E. coli YgbP/IspD in mixed type mode regarding both substrates. Interestingly, MEPN shows the highest inhibitory activity when compared to known inhibitors of E. coli YgbP/IspD. The mechanism of this enzyme was also studied by steady-state kinetic analysis and it was found that the substrates add to the enzyme in sequential manner.
由于多药耐药的致病微生物对健康构成严重威胁,因此不断开发新的药物以克服新出现的耐药性至关重要。甲羟戊酸途径(MEP)是抗菌药物开发的理想靶点,因为它在人类中不存在,但在大多数细菌和寄生虫疟原虫中存在。在这里,我们报告了新型强效抑制剂(MEPN)的合成和稳态动力学,该抑制剂是 MEP 途径的第三酶大肠杆菌 YgbP/IspD。MEPN 以混合模式抑制大肠杆菌 YgbP/IspD 的两种底物。有趣的是,与已知的大肠杆菌 YgbP/IspD 抑制剂相比,MEPN 显示出最高的抑制活性。通过稳态动力学分析还研究了该酶的机制,发现底物依次添加到酶中。