Suppr超能文献

在石墨烯-硅肖特基太阳能电池中使陷阱电荷密度最小化以趋近理想二极管

Minimizing Trap Charge Density towards an Ideal Diode in Graphene-Silicon Schottky Solar Cell.

作者信息

Adhikari Subash, Biswas Chandan, Doan Manh-Ha, Kim Sung-Tae, Kulshreshtha Chandramouli, Lee Young Hee

机构信息

Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea.

Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2019 Jan 9;11(1):880-888. doi: 10.1021/acsami.8b18140. Epub 2018 Dec 28.

Abstract

Photovoltaic device performance of graphene/n-Si Schottky diodes is largely affected by inhomogeneous oxide formation at the interface that suppresses the tunneling current of injected and photoexcited charges. The accumulated trap charges at low current induce charge recombination at the interface and degrade the ideality factor of the diode and the fill factor (FF) of the solar cell. This consequently gives rise to a nonlinear current-voltage ( I- V) feature in solar cells, commonly known as an S-shaped kink, which can be engineered by optimizing the interface barrier thickness or by increasing the carrier mobility. Here, we present chemical and electrochemical doping methods to increase the conductivity of graphene that transforms nonlinear kink photodiodes with a low FF and solar cell efficiency towards trap-free linear photovoltaic I- V. Space-charge-limited-current manifested Ohmic I- V diode behavior with enhanced conductance in graphene by injecting homogeneous ionic liquid; confirming the significant reduction of trap charge density. This was further congruent with the disappearance of the nonlinear kink in photodiodes with a high FF and nearly ideal diodes. The solar cell efficiency obtained with our strategy is around 13.6% and suggests possibilities to reach the theoretical limit of 19% by tailoring parameters such as conductance of graphene, carrier density of Si, and oxidation of the interfaces.

摘要

石墨烯/n-Si肖特基二极管的光伏器件性能在很大程度上受到界面处不均匀氧化物形成的影响,这种氧化物会抑制注入电荷和光激发电荷的隧穿电流。低电流下积累的陷阱电荷会在界面处引起电荷复合,降低二极管的理想因子和太阳能电池的填充因子(FF)。这进而在太阳能电池中产生非线性电流-电压(I-V)特性,通常称为S形扭结,可通过优化界面势垒厚度或提高载流子迁移率来进行调控。在此,我们展示了化学和电化学掺杂方法,以提高石墨烯的导电性,从而将具有低填充因子和太阳能电池效率的非线性扭结光电二极管转变为无陷阱的线性光伏I-V特性。通过注入均匀的离子液体,空间电荷限制电流在石墨烯中表现出具有增强电导率的欧姆I-V二极管行为;证实了陷阱电荷密度的显著降低。这进一步与具有高填充因子的光电二极管和近乎理想二极管中非线性扭结的消失相一致。我们的策略所获得的太阳能电池效率约为13.6%,并表明通过调整诸如石墨烯的电导率、硅的载流子密度和界面氧化等参数有可能达到19%的理论极限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验