State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Textiles, Donghua University , Shanghai 201620 , China.
Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China.
ACS Nano. 2019 Feb 26;13(2):1060-1070. doi: 10.1021/acsnano.8b08242. Epub 2018 Dec 21.
Both antigravity directional water transport and ultrafast evaporation are critical to achieving a high-performance moisture-wicking fabric. The transpiration in vascular plants possess both of these features, which is due to their optimized hierarchical structure composed of multibranching porous networks following Murray's law. However, it remains a great challenge to simultaneously realize the ultrafast water transport and evaporation by mimicking nature's Murray networks in the synthetic materials. Here, we report a synergistic assembly strategy to create a biomimetic micro- and nanofibrous membrane with antigravity directional water transport and quick-dry performance by combining a multibranching porous structure and surface energy gradient, overcoming previous limitations. The resulting fiber-based porous Murray membranes exhibit an ultrahigh one-way transport capability ( R) of 1245%, a desired overall moisture management capability (OMMC) of 0.94, and an outstanding water evaporation rate of 0.67 g h (5.8 and 2.1 times higher than the cotton fabric and Coolmax fabric, respectively). Overall, the successful synthesis of these biomimetic porous Murray membranes should serve as a source of inspiration for the development of moisture-wicking technologies, providing personal comfort in hot or humid environments.
抗重力定向输水和超快速蒸发对于实现高性能吸湿织物至关重要。维管植物的蒸腾作用具有这两个特征,这归因于它们经过优化的分层结构,由遵循默里定律的多分支多孔网络组成。然而,通过模仿自然界的默里网络在合成材料中同时实现超快的水传输和蒸发仍然是一个巨大的挑战。在这里,我们报告了一种协同组装策略,通过结合多分支多孔结构和表面能梯度,创造出一种具有抗重力定向输水和快干性能的仿生微纳纤维膜,克服了以前的限制。所得到的纤维基多孔默里膜表现出超高的单向传输能力(R)为 1245%,期望的整体水分管理能力(OMMC)为 0.94,以及出色的水蒸发率为 0.67 g h(分别比棉织物和 Coolmax 织物高 5.8 和 2.1 倍)。总的来说,这些仿生多孔默里膜的成功合成应该为吸湿技术的发展提供灵感,为热湿环境中的个人舒适提供帮助。