Suppr超能文献

通过在信息-物理-社会系统中的协作波束成形来优化社会和物理传感器节点的传输。

Transmission Optimization of Social and Physical Sensor Nodes via Collaborative Beamforming in Cyber-Physical-Social Systems.

机构信息

Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, Nanchang 330099, China.

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.

出版信息

Sensors (Basel). 2018 Dec 6;18(12):4300. doi: 10.3390/s18124300.

Abstract

The recently emerging cyber-physical-social system (CPSS) can enable efficient interactions between the social world and cyber-physical system (CPS). The wireless sensor network (WSN) with physical and social sensor nodes plays an important role in CPSS. The integration of the social sensors and physical sensors in CPSS provides an advantage for smart services in different application areas. However, the dynamics of social mobility for social sensors pose new challenges for implementing the coordination of transmission. Furthermore, the integration of social and physical sensors also faces the challenges in term of improving energy efficiency and increasing transmission range. To solve these problems, we integrate the model of social dynamics with collaborative beamforming (CB) technique to formulate the transmission optimization problem as a dynamic game. A novel transmission scheme based on reinforcement learning is proposed to solve the formulated problem. The corresponding implementation of the proposed transmission scheme in CPSS is presented by the design of message exchange processes. The extensive simulation results demonstrate that the proposed transmission scheme presents lower interference to noise ratio (INR) and better signal to noise ratio (SNR) performance in comparison with the existing schemes. The results also indicate that the proposed method has effective adaptation to the dynamic mobility of social sensor nodes in CPSS.

摘要

最近出现的网络物理社会系统(CPSS)可以实现社会世界和网络物理系统(CPS)之间的高效交互。具有物理和社会传感器节点的无线传感器网络(WSN)在 CPSS 中发挥着重要作用。CPSS 中社会传感器和物理传感器的集成为不同应用领域的智能服务提供了优势。然而,社会传感器的社会流动性动态为传输协调的实现带来了新的挑战。此外,社会和物理传感器的集成也面临着提高能量效率和增加传输范围的挑战。为了解决这些问题,我们将社会动态模型与协作波束形成(CB)技术集成,将传输优化问题表述为一个动态博弈。提出了一种基于强化学习的新型传输方案来解决所提出的问题。通过设计消息交换过程,提出了在 CPSS 中实现所提出传输方案的相应方法。广泛的仿真结果表明,与现有方案相比,所提出的传输方案在干扰噪声比(INR)和信噪比(SNR)性能方面具有更低的干扰和更好的性能。结果还表明,该方法对 CPSS 中社会传感器节点的动态移动性具有有效的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df28/6308629/0dbe1c788ec8/sensors-18-04300-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验