Suppr超能文献

基于模拟确定的带通滤波器的最小熵反卷积用于检测轴向柱塞泵轴承故障。

Minimum entropy deconvolution based on simulation-determined band pass filter to detect faults in axial piston pump bearings.

作者信息

Wang Shuhui, Xiang Jiawei, Tang Hesheng, Liu Xiaoyang, Zhong Yongteng

机构信息

College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, PR China.

College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, PR China.

出版信息

ISA Trans. 2019 May;88:186-198. doi: 10.1016/j.isatra.2018.11.040. Epub 2018 Dec 13.

Abstract

The fault diagnosis of axial piston pumps is of significance for enhancing the reliability and security of hydraulic systems. Most of the faults occurring in the mechanical components of piston pumps are exhibited as fault-excited impulses. However, the strong impact-induced natural periodic impulses under the common working conditions (i.e. reciprocating motion of pistons) inevitably cause interference that considerably affects the fault detection performance. In this study, a simulation-determined band pass filter is employed to improve the performance of minimum entropy deconvolution (MED) for the fault diagnosis of axial piston pump bearings. First, a finite element method (FEM) simulation is performed to determine the possible carrier frequency. Second, the carrier frequency is used as the center frequency in association with a fixed bandwidth to determine the band pass filter parameters. Finally, the MED technique is applied to enhance weak fault-excited impulses by means of kurtosis maximization. Thereafter, envelope spectrum analysis is applied to the enhanced signals to obtain faulty feature frequencies. Two case studies are conducted, using bearings with faults in the outer and inner races of an axial piston pumps under common working conditions. The case studies confirm the necessity and effectiveness of the proposed method for detecting bearings faults in axial piston pumps.

摘要

轴向柱塞泵的故障诊断对于提高液压系统的可靠性和安全性具有重要意义。柱塞泵机械部件中出现的大多数故障都表现为故障激发的脉冲。然而,在常见工作条件下(即活塞的往复运动),强烈的冲击引起的自然周期性脉冲不可避免地会产生干扰,这对故障检测性能有很大影响。在本研究中,采用模拟确定的带通滤波器来提高最小熵反卷积(MED)在轴向柱塞泵轴承故障诊断中的性能。首先,进行有限元方法(FEM)模拟以确定可能的载波频率。其次,将载波频率用作中心频率并结合固定带宽来确定带通滤波器参数。最后,应用MED技术通过最大化峰度来增强微弱的故障激发脉冲。此后,对增强后的信号进行包络谱分析以获得故障特征频率。进行了两个案例研究,使用了在常见工作条件下轴向柱塞泵外圈和内圈有故障的轴承。案例研究证实了所提出的方法用于检测轴向柱塞泵轴承故障的必要性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验