From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
the Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
J Biol Chem. 2019 Mar 8;294(10):3464-3475. doi: 10.1074/jbc.RA118.006535. Epub 2018 Dec 19.
Interactions between secreted immune proteins called chemokines and their cognate G protein-coupled receptors regulate the trafficking of leukocytes in inflammatory responses. The two-site, two-step model describes these interactions. It involves initial binding of the chemokine N-loop/β3 region to the receptor's N-terminal region and subsequent insertion of the chemokine N-terminal region into the transmembrane helical bundle of the receptor concurrent with receptor activation. Here, we test aspects of this model with C-C motif chemokine receptor 1 (CCR1) and several chemokine ligands. First, we compared the chemokine-binding affinities of CCR1 with those of peptides corresponding to the CCR1 N-terminal region. Relatively low affinities of the peptides and poor correlations between CCR1 and peptide affinities indicated that other regions of the receptor may contribute to binding affinity. Second, we evaluated the contributions of the two CCR1-interacting regions of the cognate chemokine ligand CCL7 (formerly monocyte chemoattractant protein-3 (MCP-3)) using chimeras between CCL7 and the non-cognate ligand CCL2 (formerly MCP-1). The results revealed that the chemokine N-terminal region contributes significantly to binding affinity but that differences in binding affinity do not completely account for differences in receptor activation. On the basis of these observations, we propose an elaboration of the two-site, two-step model-the "three-step" model-in which initial interactions of the first site result in low-affinity, nonspecific binding; rate-limiting engagement of the second site enables high-affinity, specific binding; and subsequent conformational rearrangement gives rise to receptor activation.
细胞因子是一类分泌型免疫蛋白,通过与其同源的 G 蛋白偶联受体相互作用,调节白细胞在炎症反应中的迁移。双位点两步模型描述了这些相互作用。它涉及细胞因子 N 环/β3 区域与受体 N 端区域的初始结合,以及随后细胞因子 N 端区域插入受体跨膜螺旋束,同时伴随着受体的激活。在这里,我们用 C-C 基序趋化因子受体 1(CCR1)和几种趋化因子配体来验证该模型的某些方面。首先,我们比较了 CCR1 的趋化因子结合亲和力与对应于 CCR1 N 端区域的肽的结合亲和力。肽的亲和力相对较低,并且 CCR1 与肽的亲和力之间相关性较差,这表明受体的其他区域可能有助于结合亲和力。其次,我们使用 CCL7(以前称为单核细胞趋化蛋白-3(MCP-3))与非同源配体 CCL2(以前称为 MCP-1)之间的嵌合体来评估同源配体 CCL7 中与 CCR1 相互作用的两个区域的贡献。结果表明,趋化因子 N 端区域对结合亲和力有重要贡献,但结合亲和力的差异并不能完全解释受体激活的差异。基于这些观察结果,我们提出了双位点两步模型的改进版本——“三步”模型,其中第一位点的初始相互作用导致低亲和力、非特异性结合;第二位点的限速结合使高亲和力、特异性结合成为可能;随后的构象重排导致受体激活。