Suppr超能文献

基于 T1 加权 MRI 的 Delta 放射组学可改善新辅助化疗治疗的软组织肉瘤的反应预测。

T -based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy.

机构信息

Department of Radiology, Institut Bergonie, Regional Comprehensive Cancer Center, Bordeaux, France.

University of Bordeaux, IMB, UMR CNRS 5251, INRIA Project team Monc, Talence, France.

出版信息

J Magn Reson Imaging. 2019 Aug;50(2):497-510. doi: 10.1002/jmri.26589. Epub 2018 Dec 19.

Abstract

BACKGROUND

Standard of care for patients with high-grade soft-tissue sarcoma (STS) are being redefined since neoadjuvant chemotherapy (NAC) has demonstrated a positive effect on patients' outcome. Yet response evaluation in clinical trials still relies on RECIST criteria.

PURPOSE

To investigate the added value of a Delta-radiomics approach for early response prediction in patients with STS undergoing NAC.

STUDY TYPE

Retrospective.

POPULATION

Sixty-five adult patients with newly-diagnosed, locally-advanced, histologically proven high-grade STS of trunk and extremities. All were treated by anthracycline-based NAC followed by surgery and had available MRI at baseline and after two chemotherapy cycles.

FIELD STRENGTH/SEQUENCE: Pre- and postcontrast enhanced T -weighted imaging (T -WI), turbo spin echo T -WI at 1.5 T.

ASSESSMENT

A threshold of <10% viable cells on surgical specimens defined good response (Good-HR). Two senior radiologists performed a semantic analysis of the MRI. After 3D manual segmentation of tumors at baseline and early evaluation, and standardization of voxel-sizes and intensities, absolute changes in 33 texture and shape features were calculated.

STATISTICAL TESTS

Classification models based on logistic regression, support vector machine, k-nearest neighbors, and random forests were elaborated using crossvalidation (training and validation) on 50 patients ("training cohort") and was validated on 15 other patients ("test cohort").

RESULTS

Sixteen patients were good-HR. Neither RECIST status (P = 0.112) nor semantic radiological variables were associated with response (range of P-values: 0.134-0.490) except an edema decrease (P = 0.003), although 14 shape and texture features were (range of P-values: 0.002-0.037). On the training cohort, the highest diagnostic performances were obtained with random forests built on three features: Δ_Histogram_Entropy, Δ_Elongation, Δ_Surrounding_Edema, which provided: area under the curve the receiver operating characteristic = 0.86, accuracy = 88.1%, sensitivity = 94.1%, and specificity = 66.3%. On the test cohort, this model provided an accuracy of 74.6% but 3/5 good-HR were systematically ill-classified.

DATA CONCLUSION

A T -based Delta-radiomics approach might improve early response assessment in STS patients with a limited number of features.

LEVEL OF EVIDENCE

3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:497-510.

摘要

背景

新辅助化疗(NAC)已证明对患者的预后有积极影响,因此高级软组织肉瘤(STS)患者的治疗标准正在重新定义。然而,临床试验中的反应评估仍然依赖于 RECIST 标准。

目的

探讨 Delta 放射组学方法在接受 NAC 的 STS 患者早期反应预测中的附加价值。

研究类型

回顾性研究。

人群

65 名成年患者,新诊断为局部晚期,组织学证实为躯干和四肢的高级 STS。所有患者均接受基于蒽环类药物的 NAC 治疗,随后进行手术,并在基线和两个化疗周期后获得 MRI。

磁场强度/序列:基线和增强后 T1 加权成像(T1-WI),1.5T 下的涡轮自旋回波 T1-WI。

评估

手术标本上<10%活细胞的阈值定义为良好反应(Good-HR)。两名资深放射科医生对 MRI 进行语义分析。在基线和早期评估时对肿瘤进行 3D 手动分割,并对体素大小和强度进行标准化后,计算 33 个纹理和形状特征的绝对变化。

统计检验

使用 50 名患者的交叉验证(训练和验证)(“训练队列”),基于逻辑回归、支持向量机、k-最近邻和随机森林开发分类模型,并在另外 15 名患者(“测试队列”)上进行验证。

结果

16 名患者为 Good-HR。RECIST 状态(P = 0.112)和语义放射学变量均与反应无关(P 值范围:0.134-0.490),除了水肿减少(P = 0.003),尽管 14 个形状和纹理特征与反应相关(P 值范围:0.002-0.037)。在训练队列中,基于三个特征构建的随机森林模型具有最高的诊断性能:Delta_Histogram_Entropy、Delta_Elongation、Delta_Surrounding_Edema,其曲线下面积的接收者操作特征=0.86,准确性=88.1%,灵敏度=94.1%,特异性=66.3%。在测试队列中,该模型的准确性为 74.6%,但 5 名 Good-HR 中有 3 名被错误分类。

数据结论

基于 T 的 Delta 放射组学方法可以通过使用较少的特征来改善 STS 患者的早期反应评估。

证据水平

3 级技术功效:2 期 J. Magn. Reson. Imaging 2019;50:497-510.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验