Suppr超能文献

优化乳腺钼靶影像解读教育:利用深度学习进行特定队列的错误检测以加强放射科医生培训。

Optimizing mammography interpretation education: leveraging deep learning for cohort-specific error detection to enhance radiologist training.

作者信息

Tao Xuetong, Reed Warren M, Li Tong, Brennan Patrick C, Gandomkar Ziba

机构信息

The University of Sydney, Faculty of Health Sciences, Discipline of Medical Imaging Science, Sydney, New South Wales, Australia.

The University of Sydney a joint venture with Cancer Council NSW, The Daffodil Centre, Woolloomooloo, New South Wales, Australia.

出版信息

J Med Imaging (Bellingham). 2024 Sep;11(5):055502. doi: 10.1117/1.JMI.11.5.055502. Epub 2024 Oct 3.

Abstract

PURPOSE

Accurate interpretation of mammograms presents challenges. Tailoring mammography training to reader profiles holds the promise of an effective strategy to reduce these errors. This proof-of-concept study investigated the feasibility of employing convolutional neural networks (CNNs) with transfer learning to categorize regions associated with false-positive (FP) errors within screening mammograms into categories of "low" or "high" likelihood of being a false-positive detection for radiologists sharing similar geographic characteristics.

APPROACH

Mammography test sets assessed by two geographically distant cohorts of radiologists (cohorts A and B) were collected. FP patches within these mammograms were segmented and categorized as "difficult" or "easy" based on the number of readers committing FP errors. Patches outside 1.5 times the interquartile range above the upper quartile were labeled as difficult, whereas the remaining patches were labeled as easy. Using transfer learning, a patch-wise CNN model for binary patch classification was developed utilizing ResNet as the feature extractor, with modified fully connected layers for the target task. Model performance was assessed using 10-fold cross-validation.

RESULTS

Compared with other architectures, the transferred ResNet-50 achieved the highest performance, obtaining receiver operating characteristics area under the curve values of 0.933 ( ) and 0.975 ( ) on the validation sets for cohorts A and B, respectively.

CONCLUSIONS

The findings highlight the feasibility of employing CNN-based transfer learning to predict the difficulty levels of local FP patches in screening mammograms for specific radiologist cohort with similar geographic characteristics.

摘要

目的

准确解读乳房X光片存在挑战。根据读者特征定制乳房X光检查培训有望成为减少这些错误的有效策略。这项概念验证研究调查了采用具有迁移学习功能的卷积神经网络(CNN)将筛查乳房X光片中与假阳性(FP)错误相关的区域分类为放射科医生出现假阳性检测“低”或“高”可能性类别的可行性,这些放射科医生具有相似的地理特征。

方法

收集了由两个地理位置相距较远的放射科医生队列(队列A和队列B)评估的乳房X光检查测试集。根据出现FP错误的读者数量,将这些乳房X光片中的FP斑块进行分割并分类为“困难”或“容易”。高于上四分位数1.5倍四分位距之外的斑块被标记为困难,而其余斑块被标记为容易。利用迁移学习,开发了一种用于二元斑块分类的逐斑块CNN模型,该模型使用ResNet作为特征提取器,并针对目标任务修改了全连接层。使用10折交叉验证评估模型性能。

结果

与其他架构相比,迁移后的ResNet-50性能最高,在队列A和队列B的验证集上分别获得曲线下面积值为0.933( )和0.975( )的接收器操作特征。

结论

研究结果突出了采用基于CNN的迁移学习来预测具有相似地理特征的特定放射科医生队列筛查乳房X光片中局部FP斑块难度水平的可行性。

相似文献

本文引用的文献

7
Artificial Intelligence and Radiology Education.人工智能与放射学教育
Radiol Artif Intell. 2022 Nov 16;5(1):e220084. doi: 10.1148/ryai.220084. eCollection 2023 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验