a Department of Geography, Faculty of Natural sciences, Jamia Millia Islamia , New Delhi , India.
Int J Environ Health Res. 2019 Oct;29(5):561-581. doi: 10.1080/09603123.2018.1557121. Epub 2018 Dec 20.
This paper presents a spatial risk analysis of waterborne diseases using analytical hierarchy process that rely on geographical information system (GIS)-automated techniques. We selected nine parameters for assessing waterborne diseases prone areas (WBDP). All the weighted parameter layers were integrated to obtain WBDP map. Of the total WBDP area, 42% area was found under medium category, 34% and 24% area under high and low category, respectively. We have also empirically analysed the factors influencing WBDP areas using regression model. Results revealed that explanatory variables like purification of water, washing hand before drinking and eating, and Surface Water Quality Index (SWQI) are the most influential and positively associated while dipping hand in the vessel is negatively associated with the WBD. Further, WBDP areas were validated by analysing their relationship with the actual incidences of WBD(s). Our study may prove to be beneficial for managing and formulating guidelines for the WBDP areas in similar geographical regions. GIS: Geographical information system; WBDP: Water borne diseases prone areas; SWQI: Surface water quality index; WBD: Water borne Disease; MDG: Millennium Development Goal; AHP: Analytical hierarchical process; GPS: Global Positioning System; NCR: National Capital Region; IDW: Inverse distance weighted; pH: Potential of Hydrogen; TDS: Total dissolved solid; COD: Chemical Oxygen Demand; BOD: Biochemical Oxygen Demand; TA: Total alkalinity; TH: Total Hardness; Cl: Chlorination; SO4: Sulphate, NO3: Nitrate; FL: Floride; ICMR: Indian Council of Medical Research; ISB: Indian Standards Bureau; RW: Relative weights; WQI: Water Quality Index; DJB: Delhi Jal Board; MDG: Millennium Development Goals; GWQI: Ground Water Quality Index; MCD: Municipality Corporation of Delhi; CPCB: Central Pollution Control Board.
本文利用基于地理信息系统(GIS)自动化技术的层次分析法,对水媒疾病进行空间风险分析。我们选择了九个参数来评估水媒疾病易患区(WBDP)。所有加权参数层都进行了集成,以获得 WBDP 图。在总 WBDP 区域中,42%的区域属于中等类别,34%和 24%的区域分别属于高和低类别。我们还使用回归模型实证分析了影响 WBDP 区域的因素。结果表明,水的净化、饮水和进食前洗手以及地表水质量指数(SWQI)等解释变量是最具影响力和正相关的,而将手浸入容器中则与 WBD 呈负相关。此外,还通过分析 WBD 实际发病情况与 WBDP 区域的关系对 WBDP 区域进行了验证。我们的研究结果可能有助于管理和制定类似地理区域的 WBDP 区域的管理和指导方针。GIS:地理信息系统;WBDP:水媒疾病易患区;SWQI:地表水质量指数;WBD:水媒疾病;MDG:千年发展目标;AHP:层次分析法;GPS:全球定位系统;NCR:国家首都地区;IDW:反向距离加权;pH:氢离子浓度;TDS:总溶解固体;COD:化学需氧量;BOD:生化需氧量;TA:总碱度;TH:总硬度;Cl:氯化;SO4:硫酸盐,NO3:硝酸盐;FL:氟化物;ICMR:印度医学研究理事会;ISB:印度标准局;RW:相对权重;WQI:水质指数;DJB:德里水务署;MDG:千年发展目标;GWQI:地下水质量指数;MCD:德里市政公司;CPCB:中央污染控制委员会。