Suppr超能文献

负载金钯双金属纳米粒子的高多孔葫芦巴多糖基微网络用于催化应用。

Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications.

机构信息

School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712 749, Republic of Korea.

Department of Energy and Materials Engineering, Dongguk University, Seoul 100-715, Republic of Korea.

出版信息

Int J Biol Macromol. 2019 Apr 1;126:352-358. doi: 10.1016/j.ijbiomac.2018.12.137. Epub 2018 Dec 17.

Abstract

Currently, metallic nanoparticles possessing versatile heterogeneous catalytic functionality such as in hydrogenation, water splitting, hydrogen production and CO reduction for global pollution remediation have been paid great attentions due to their high chemical stability, superior activity and unique electrical and optical properties. However, the gradual degradation of their catalytic activity on multiple usage limits the monometallic nanoparticles to industrial applications. Herein, we fabricated the highly porous fenugreek polysaccharide assisted green synthesis of AuPd nanostructures for heterogeneous catalytic hydrogenation of the industrial usable highly toxic 4-nitrophenol to the medicinally useful 4-aminophenol. The aqueous method developed in the present work is environmentally friendly, simple and low-cost procedure. The fabricated bimetallic porous AuPd nanostructures characterized using SEM, TEM, UV-Vis, XRD, XPS and FTIR analysis. The catalytic activity of the synthesized nanostructures was studied for the heterogeneous hydrogenation of 4-nitrophenol to 4-aminophenol in presence of NaBH, and the catalytic kinetic for the hydrogenation was analyzed via an UV-Vis spectrometer.

摘要

目前,由于具有多种异相催化功能的金属纳米粒子(如氢化、水分解、产氢和 CO 还原)具有高化学稳定性、优异的活性以及独特的电学和光学性质,因此对于全球污染治理,它们受到了极大的关注。然而,由于多次使用导致其催化活性逐渐降低,限制了单金属纳米粒子在工业应用中的使用。本文采用高多孔葫芦巴多糖辅助绿色合成 AuPd 纳米结构,用于 4-硝基苯酚的多相催化氢化反应,将工业上可用的高毒性 4-硝基苯酚转化为药用的 4-氨基酚。本工作中开发的水相法具有环保、简单和低成本的特点。通过 SEM、TEM、UV-Vis、XRD、XPS 和 FTIR 分析对制备的双金属多孔 AuPd 纳米结构进行了表征。在 NaBH 存在下,研究了合成纳米结构对 4-硝基苯酚异相氢化生成 4-氨基酚的催化活性,并通过紫外可见分光光度计分析了氢化反应的催化动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验