Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou road, Nanjing, Jiangsu province, China.
Department of Surgical Oncology, University of Miami, Miami, USA.
J Exp Clin Cancer Res. 2018 Dec 20;37(1):320. doi: 10.1186/s13046-018-0993-y.
Autophagy plays a crucial role in sustaining the homeostasis in various malignant diseases. It has also been reported to promote tumor development in multiple cancers. Glutaminolysis instead of Warburg Effect produce adequate ATP and provide nitrogen and carbon to replenish the TCA cycle which has been discovered to be a new energy source for tumor cells recently. By means of degrading intracellular particles including amino acids, nucleotides, fatty acids, sugars and aged organisms, autophagy can recycle the aforementioned particles into bioenergetics and biosynthesis pathways, finally favoring tumor cells. MicroRNA is a kind of noncoding RNA that regulates the targeting gene expression mostly at post-transcription level. Among these miRNAs, microRNA-133a-3p is reported to be a tumor suppressor in numerous cancers.
We characterized the down-regulated expression level of microRNA-133a-3p in gastric cancer via TCGA database. Subsequently, we verified the tumor suppressor role of microRNA-133a-3p in gastric cancer cells through a series biological function assay. We used immunofluorescence and transmission electron microscope to observe the negative effect of microRNA-133a-3p on autophagy and used dual-luciferase report assay to identify the candidate gene GABARAPL1 of microRNA-133A-3p.Then we used high performance liquid phase mass spectrometry and seahorse analysis to detect whether miR-133a-3p could block the glutaminolysis metabolism through autophagy. At last, we confirmed the tumor suppressor role of microRNA-133a-3p in vivo on PDX mice model.
We demonstrated that microRNA-133a-3p overexpression could block the activation of autophagy to ruin the abnormal glutaminolysis and further inhibit the growth and metastasis of gastric cancer cells. We successfully proved gastric cancer cells can replenish glutaminolysis via autophagy and microRNA-133a-3p could block aforementioned pathway by targeting core autophagy participants GABARAPL1 and ATG13.We then verified the negative function of microRNA-133a-3p on autophagy-mediated glutaminolysis both in PDX model and human gastric cancer organoid model.
MicroRNA-133a-3p targets GABARAPL1 to block autophagy-mediated glutaminolysis, further repressing gastric cancer growth and metastasis.
自噬在维持各种恶性疾病的内稳态中起着至关重要的作用。它也被报道在多种癌症中促进肿瘤的发展。与沃伯格效应不同,谷氨酰胺分解代谢产生足够的 ATP,并为 TCA 循环提供氮和碳,最近发现这是肿瘤细胞的一种新的能量来源。自噬可以通过降解包括氨基酸、核苷酸、脂肪酸、糖和衰老生物在内的细胞内颗粒,将上述颗粒回收再利用到生物能量和生物合成途径中,最终有利于肿瘤细胞。miRNA 是一种非编码 RNA,主要在转录后水平调节靶向基因的表达。在这些 miRNA 中,miR-133a-3p 被报道在许多癌症中是一种肿瘤抑制因子。
我们通过 TCGA 数据库对胃癌中 microRNA-133a-3p 的下调表达水平进行了表征。随后,我们通过一系列生物学功能实验验证了 microRNA-133a-3p 在胃癌细胞中的肿瘤抑制作用。我们使用免疫荧光和透射电子显微镜观察 microRNA-133a-3p 对自噬的负向作用,并使用双荧光素酶报告实验鉴定 microRNA-133A-3p 的候选基因 GABARAPL1。然后我们使用高效液相色谱质谱联用和 Seahorse 分析检测 miR-133a-3p 是否可以通过自噬阻断谷氨酰胺分解代谢。最后,我们在 PDX 小鼠模型上证实了 microRNA-133a-3p 的肿瘤抑制作用。
我们证明了 microRNA-133a-3p 的过表达可以阻断自噬的激活,破坏异常的谷氨酰胺分解代谢,进一步抑制胃癌细胞的生长和转移。我们成功证明了胃癌细胞可以通过自噬补充谷氨酰胺分解代谢,而 microRNA-133a-3p 可以通过靶向核心自噬参与者 GABARAPL1 和 ATG13 来阻断上述途径。然后,我们在 PDX 模型和人胃癌类器官模型中验证了 microRNA-133a-3p 对自噬介导的谷氨酰胺分解代谢的负性作用。
microRNA-133a-3p 靶向 GABARAPL1 阻断自噬介导的谷氨酰胺分解代谢,从而抑制胃癌的生长和转移。