Suppr超能文献

靶向 NAD 代谢以增强放射治疗反应。

Targeting NAD Metabolism to Enhance Radiation Therapy Responses.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA.

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN.

出版信息

Semin Radiat Oncol. 2019 Jan;29(1):6-15. doi: 10.1016/j.semradonc.2018.10.009.

Abstract

Nicotinamide adenine dinucleotide (NAD) metabolism is integrally connected with the mechanisms of action of radiation therapy and is altered in many radiation-resistant tumors. This makes NAD metabolism an ideal target for therapies that increase radiation sensitivity and improve patient outcomes. This review provides an overview of NAD metabolism in the context of the cellular response to ionizing radiation, as well as current therapies that target NAD metabolism to enhance radiation therapy responses. Additionally, we summarize state-of-the-art methods for measuring, modeling, and manipulating NAD metabolism, which are being used to identify novel targets in the NAD metabolic network for therapeutic interventions in combination with radiation therapy.

摘要

烟酰胺腺嘌呤二核苷酸(NAD)代谢与放射治疗的作用机制密切相关,并且在许多放射抗性肿瘤中发生改变。这使得 NAD 代谢成为增加辐射敏感性和改善患者预后的理想治疗靶标。本综述概述了 NAD 代谢在细胞对电离辐射的反应中的作用,以及目前靶向 NAD 代谢以增强放射治疗反应的治疗方法。此外,我们总结了用于测量、建模和操纵 NAD 代谢的最新方法,这些方法正在被用于鉴定 NAD 代谢网络中的新靶标,以与放射治疗联合进行治疗干预。

相似文献

1
Targeting NAD Metabolism to Enhance Radiation Therapy Responses.
Semin Radiat Oncol. 2019 Jan;29(1):6-15. doi: 10.1016/j.semradonc.2018.10.009.
3
Newly developed strategies for improving sensitivity to radiation by targeting signal pathways in cancer therapy.
Cancer Sci. 2013 Nov;104(11):1401-10. doi: 10.1111/cas.12252. Epub 2013 Sep 23.
4
Emerging strategies to target cancer metabolism and improve radiation therapy outcomes.
Br J Radiol. 2020 Nov 1;93(1115):20200067. doi: 10.1259/bjr.20200067. Epub 2020 Jun 23.
5
NAD salvage pathway in cancer metabolism and therapy.
Pharmacol Res. 2016 Dec;114:274-283. doi: 10.1016/j.phrs.2016.10.027. Epub 2016 Nov 2.
6
NAD⁺ depletion by APO866 in combination with radiation in a prostate cancer model, results from an in vitro and in vivo study.
Radiother Oncol. 2014 Feb;110(2):348-54. doi: 10.1016/j.radonc.2013.10.039. Epub 2014 Jan 8.
7
Novel radiosensitizing anticancer therapeutics.
Anticancer Res. 2012 Jul;32(7):2487-99.
8
Modulating the radiation response.
Stem Cells. 1996 Jan;14(1):10-5. doi: 10.1002/stem.140010.
9
2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer.
Free Radic Biol Med. 2008 Feb 1;44(3):322-31. doi: 10.1016/j.freeradbiomed.2007.08.032. Epub 2007 Oct 16.
10
Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.
J Natl Cancer Inst. 2011 Apr 20;103(8):645-61. doi: 10.1093/jnci/djr093. Epub 2011 Apr 4.

引用本文的文献

1
Mucosal Microbiome Markers of Complete Pathologic Response to Neoadjuvant Therapy in Rectal Carcinoma.
Cancer Res Commun. 2025 May 1;5(5):756-766. doi: 10.1158/2767-9764.CRC-25-0036.
2
Oxygen-Dependent Interactions between the Ruthenium Cage and the Photoreleased Inhibitor in NAMPT-Targeted Photoactivated Chemotherapy.
J Med Chem. 2024 Jul 11;67(13):11086-11102. doi: 10.1021/acs.jmedchem.4c00589. Epub 2024 Jun 26.
3
Redox organization of living systems.
Free Radic Biol Med. 2024 May 1;217:179-189. doi: 10.1016/j.freeradbiomed.2024.03.008. Epub 2024 Mar 14.
5
Will Sirtuin 2 Be a Promising Target for Neuroinflammatory Disorders?
Front Cell Neurosci. 2022 Jun 22;16:915587. doi: 10.3389/fncel.2022.915587. eCollection 2022.
9
Prognosis prediction model for a special entity of gastric cancer, linitis plastica.
J Gastrointest Oncol. 2021 Apr;12(2):307-327. doi: 10.21037/jgo-20-264.
10
Mitochondrial STAT3 regulates antioxidant gene expression through complex I-derived NAD in triple negative breast cancer.
Mol Oncol. 2021 May;15(5):1432-1449. doi: 10.1002/1878-0261.12928. Epub 2021 Apr 10.

本文引用的文献

1
Recon3D enables a three-dimensional view of gene variation in human metabolism.
Nat Biotechnol. 2018 Mar;36(3):272-281. doi: 10.1038/nbt.4072. Epub 2018 Feb 19.
3
NAD Deficits in Age-Related Diseases and Cancer.
Trends Cancer. 2017 Aug;3(8):593-610. doi: 10.1016/j.trecan.2017.06.001. Epub 2017 Jul 3.
4
Genome-Scale Modeling of NADPH-Driven β-Lapachone Sensitization in Head and Neck Squamous Cell Carcinoma.
Antioxid Redox Signal. 2018 Oct 1;29(10):937-952. doi: 10.1089/ars.2017.7048. Epub 2017 Sep 14.
6
NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
Antioxid Redox Signal. 2018 Jan 20;28(3):251-272. doi: 10.1089/ars.2017.7216. Epub 2017 Jul 28.
7
Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
Antioxid Redox Signal. 2018 Jan 20;28(3):167-179. doi: 10.1089/ars.2017.7014. Epub 2017 Jul 19.
8
Sirtuins and DNA damage repair: SIRT7 comes to play.
Nucleus. 2017 Mar 4;8(2):107-115. doi: 10.1080/19491034.2016.1264552. Epub 2017 Feb 17.
9
Assessment of Cellular Redox State Using NAD(P)H Fluorescence Intensity and Lifetime.
Bio Protoc. 2017 Jan 20;7(2). doi: 10.21769/BioProtoc.2105.
10
PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting.
Prz Menopauzalny. 2016 Dec;15(4):215-219. doi: 10.5114/pm.2016.65667. Epub 2017 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验