Suppr超能文献

新开发的通过靶向癌症治疗中的信号通路提高辐射敏感性的策略。

Newly developed strategies for improving sensitivity to radiation by targeting signal pathways in cancer therapy.

机构信息

Department of Cardiology, Children Hospital, Chongqing Medical University, Chongqing, China.

出版信息

Cancer Sci. 2013 Nov;104(11):1401-10. doi: 10.1111/cas.12252. Epub 2013 Sep 23.

Abstract

Inherent and acquired resistance of cancer cells is increasingly recognized as a significant impediment to effective radiation cancer treatment. As important intracellular factors, aberrant tumor transmembrane signal transduction pathways, which include the prosurvival cascades (PI3K/Akt, MAPK/ERK and JAK/STAT) and the proapoptosis pathways (Wnt, p53 and TNF-α/NF-κB), have been proved to be crucial determinants of the probability of cell sensitivity to radiation in malignant lesions. There is increasing evidence that targeting the abnormal pathways that can regulate the activity of the DNA damage response and further influence the response of tumor cells to radiation may be suitable for improving radiation sensitization. Preclinical and clinical evidence suggest that agents targeting aberrant tumor signals can effectively improve the therapeutic effect of ionizing radiation. Therefore, in this review, we discuss the intricate interplay between tumor responses to radiation with the aberrant signal pathways, and the potential druggable targets within the pathways to sensitize tumors without significant collateral damage to normal tissues. The application of novel targeting compounds to manipulate the aberrant signal of tumor cells in clinical treatments is also addressed.

摘要

癌细胞的固有和获得性耐药性日益被认为是癌症放射治疗效果的重大障碍。作为重要的细胞内因素,异常的肿瘤跨膜信号转导途径,包括生存相关的级联途径(PI3K/Akt、MAPK/ERK 和 JAK/STAT)和促凋亡途径(Wnt、p53 和 TNF-α/NF-κB),已被证明是恶性病变中细胞对辐射敏感性的重要决定因素。越来越多的证据表明,针对可以调节 DNA 损伤反应活性并进一步影响肿瘤细胞对辐射反应的异常途径进行靶向治疗可能适合于提高辐射增敏性。临床前和临床证据表明,针对异常肿瘤信号的药物可以有效提高电离辐射的治疗效果。因此,在这篇综述中,我们讨论了肿瘤对辐射的反应与异常信号途径之间的复杂相互作用,以及这些途径中潜在的可药物治疗的靶点,以在不引起正常组织明显附带损伤的情况下使肿瘤敏感。还讨论了新型靶向化合物在临床治疗中用于操纵肿瘤细胞异常信号的应用。

相似文献

1
Newly developed strategies for improving sensitivity to radiation by targeting signal pathways in cancer therapy.
Cancer Sci. 2013 Nov;104(11):1401-10. doi: 10.1111/cas.12252. Epub 2013 Sep 23.
2
Signal transduction inhibitors as radiosensitizers.
Curr Med Chem Anticancer Agents. 2002 Nov;2(6):727-42. doi: 10.2174/1568011023353651.
3
Targeting inflammatory pathways for tumor radiosensitization.
Biochem Pharmacol. 2010 Dec 15;80(12):1904-14. doi: 10.1016/j.bcp.2010.06.039. Epub 2010 Jun 30.
5
Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways.
Clin Cancer Res. 2015 Jul 1;21(13):2898-904. doi: 10.1158/1078-0432.CCR-13-3229.
6
Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.
J Natl Cancer Inst. 2011 Apr 20;103(8):645-61. doi: 10.1093/jnci/djr093. Epub 2011 Apr 4.
8
Radiation-induced signaling pathways that promote cancer cell survival (review).
Int J Oncol. 2014 Nov;45(5):1813-9. doi: 10.3892/ijo.2014.2614. Epub 2014 Aug 20.
10
Phenylpropanoids in radioregulation: double edged sword.
Exp Mol Med. 2011 Jun 30;43(6):323-33. doi: 10.3858/emm.2011.43.6.034.

引用本文的文献

1
Serum metabolic profiling enables diagnosis, prognosis, and monitoring for brainstem gliomas.
Nat Commun. 2025 Jul 3;16(1):6108. doi: 10.1038/s41467-025-61163-9.
2
Analysis of nuclear maturation, DNA damage and repair gene expression of bovine oocyte and cumulus cells submitted to ionizing radiation.
Anim Reprod. 2023 May 29;20(2):e20230021. doi: 10.1590/1984-3143-AR2023-0021. eCollection 2023.
3
Identification of a three-gene prognostic signature for radioresistant esophageal squamous cell carcinoma.
World J Clin Oncol. 2023 Jan 24;14(1):13-26. doi: 10.5306/wjco.v14.i1.13.
4
CircRNAs in Tumor Radioresistance.
Biomolecules. 2022 Oct 28;12(11):1586. doi: 10.3390/biom12111586.
6
Exploring the p53 connection of cervical cancer pathogenesis involving north-east Indian patients.
PLoS One. 2020 Sep 25;15(9):e0238500. doi: 10.1371/journal.pone.0238500. eCollection 2020.
7
Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity.
Oncol Lett. 2020 Aug;20(2):993-1000. doi: 10.3892/ol.2020.11684. Epub 2020 May 28.
9
Crosstalk between long non-coding RNAs and Wnt/β-catenin signalling in cancer.
J Cell Mol Med. 2018 Apr;22(4):2062-2070. doi: 10.1111/jcmm.13522. Epub 2018 Feb 1.

本文引用的文献

1
Wnt activation is implicated in glioblastoma radioresistance.
Lab Invest. 2012 Mar;92(3):466-73. doi: 10.1038/labinvest.2011.161. Epub 2011 Nov 14.
2
Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy.
Carcinogenesis. 2011 Dec;32(12):1824-31. doi: 10.1093/carcin/bgr222. Epub 2011 Oct 8.
3
DNA damage response and growth factor signaling pathways in gliomagenesis and therapeutic resistance.
Cancer Res. 2011 Sep 15;71(18):5945-9. doi: 10.1158/0008-5472.CAN-11-1245. Epub 2011 Sep 13.
5
Patient safety in external beam radiation therapy.
AJR Am J Roentgenol. 2011 Apr;196(4):768-72. doi: 10.2214/AJR.10.6006.
6
Cancer stem cells in glioblastoma--molecular signaling and therapeutic targeting.
Protein Cell. 2010 Jul;1(7):638-55. doi: 10.1007/s13238-010-0078-y. Epub 2010 Jul 29.
7
Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy.
Drug Discov Today. 2011 Feb;16(3-4):140-6. doi: 10.1016/j.drudis.2010.12.006. Epub 2010 Dec 21.
9
Targeting inflammatory pathways for tumor radiosensitization.
Biochem Pharmacol. 2010 Dec 15;80(12):1904-14. doi: 10.1016/j.bcp.2010.06.039. Epub 2010 Jun 30.
10
New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases.
Blood. 2010 Oct 7;116(14):2429-37. doi: 10.1182/blood-2010-04-279752. Epub 2010 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验