European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK.
European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
Mol Syst Biol. 2018 Dec 20;14(12):e8430. doi: 10.15252/msb.20188430.
The effect of single nucleotide variants (SNVs) in coding and noncoding regions is of great interest in genetics. Although many computational methods aim to elucidate the effects of SNVs on cellular mechanisms, it is not straightforward to comprehensively cover different molecular effects. To address this, we compiled and benchmarked sequence and structure-based variant effect predictors and we computed the impact of nearly all possible amino acid and nucleotide variants in the reference genomes of , and Studied mechanisms include protein stability, interaction interfaces, post-translational modifications and transcription factor binding sites. We apply this resource to the study of natural and disease coding variants. We also show how variant effects can be aggregated to generate protein complex burden scores that uncover protein complex to phenotype associations based on a set of newly generated growth profiles of 93 sequenced strains in 43 conditions. This resource is available through mutfunc (www.mutfunc.com), a tool by which users can query precomputed predictions by providing amino acid or nucleotide-level variants.
单核苷酸变异(SNVs)在编码和非编码区域的影响在遗传学中非常重要。尽管许多计算方法旨在阐明 SNVs 对细胞机制的影响,但全面涵盖不同的分子效应并不容易。为了解决这个问题,我们编译并对基于序列和结构的变异效应预测因子进行了基准测试,并计算了参考基因组中几乎所有可能的氨基酸和核苷酸变异的影响,这些参考基因组来自、和 。研究的机制包括蛋白质稳定性、相互作用界面、翻译后修饰和转录因子结合位点。我们将该资源应用于天然和疾病编码变异的研究。我们还展示了如何将变异效应进行汇总,以生成蛋白质复合物负担评分,根据一组新生成的 93 个测序 菌株在 43 种条件下的生长曲线,基于一组新生成的生长曲线,揭示蛋白质复合物与表型之间的关联。该资源可通过 mutfunc(www.mutfunc.com)获得,用户可以通过提供氨基酸或核苷酸水平的变异来查询预先计算的预测。