European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
Nat Microbiol. 2017 Feb 17;2:17014. doi: 10.1038/nmicrobiol.2017.14.
Advances in our ability to systematically introduce and track controlled genetic variance in microorganisms have, in the past decade, fuelled high-throughput reverse genetics approaches. When coupled to quantitative readouts, such approaches are extremely powerful at elucidating gene function and providing insights into the underlying pathways and the overall cellular network organization. Yet, until now, all efforts to quantify microbial macroscopic phenotypes have been restricted to monitoring growth in a small number of model microorganisms. We have developed an image analysis software named Iris, which allows for systematic exploration of a number of orthogonal-to-growth processes, including biofilm formation, colony morphogenesis, envelope biogenesis, sporulation and reporter activity. In addition, Iris provides more sensitive growth measurements than currently available software and is compatible with a variety of different microorganisms, as well as with endpoint or kinetic data. We used Iris to reanalyse existing chemical genomics data in Escherichia coli and to perform proof-of-principle screens on colony biofilm formation and morphogenesis of different bacterial species and the pathogenic fungus Candida albicans. We thereby recapitulated existing knowledge but also identified a plethora of additional genes and pathways involved in both processes.
在过去的十年中,我们在系统引入和跟踪微生物受控遗传变异的能力方面取得了进展,这推动了高通量反向遗传学方法的发展。当与定量读数相结合时,这些方法在阐明基因功能以及深入了解潜在途径和整体细胞网络组织方面非常强大。然而,直到现在,所有量化微生物宏观表型的努力都仅限于监测少数模型微生物的生长情况。我们开发了一种名为 Iris 的图像分析软件,它允许系统地探索包括生物膜形成、菌落形态发生、包膜生物发生、孢子形成和报告基因活性等与生长正交的多个过程。此外,Iris 提供了比现有软件更敏感的生长测量值,并且与各种不同的微生物以及终点或动力学数据兼容。我们使用 Iris 重新分析了大肠杆菌中现有的化学基因组学数据,并对不同细菌物种和致病性真菌白色念珠菌的菌落生物膜形成和形态发生进行了原理验证筛选。我们因此再现了现有的知识,但也确定了大量参与这两个过程的其他基因和途径。