Taganap Eduard, De Las Peñas Ma Louise Antonette
Department of Mathematics, Ateneo de Manila University, Quezon City, Metro Manila 1108, Philippines.
Acta Crystallogr A Found Adv. 2019 Jan 1;75(Pt 1):94-106. doi: 10.1107/S2053273318013992.
In this article, a framework is presented that allows the systematic derivation of planar edge-to-edge k-isocoronal tilings from tile-s-transitive tilings, s ≤ k. A tiling {\cal T} is k-isocoronal if its vertex coronae form k orbits or k transitivity classes under the action of its symmetry group. The vertex corona of a vertex x of {\cal T} is used to refer to the tiles that are incident to x. The k-isocoronal tilings include the vertex-k-transitive tilings (k-isogonal) and k-uniform tilings. In a vertex-k-transitive tiling, the vertices form k transitivity classes under its symmetry group. If this tiling consists of regular polygons then it is k-uniform. This article also presents the classification of isocoronal tilings in the Euclidean plane.
在本文中,我们提出了一个框架,该框架允许从瓷砖 - s - 传递镶嵌(s ≤ k)系统地推导平面边到边的k - 等冠镶嵌。如果镶嵌({\cal T})的顶点冠在其对称群的作用下形成k个轨道或k个传递类,则该镶嵌是k - 等冠的。镶嵌({\cal T})的顶点x的顶点冠用于指代与x相邻的瓷砖。k - 等冠镶嵌包括顶点 - k - 传递镶嵌(k - 等角)和k - 均匀镶嵌。在顶点 - k - 传递镶嵌中,顶点在其对称群下形成k个传递类。如果该镶嵌由正多边形组成,那么它就是k - 均匀的。本文还给出了欧几里得平面中等冠镶嵌的分类。