Achilli Simona, Manini Nicola, Onida Giovanni, Shinada Takahiro, Tanii Takashi, Prati Enrico
Dipartimento di Fisica, Università degli Studi di Milano and European Theoretical Spectroscopy Facility - ETSF, Via Celoria 16, 20133, Milano, Italy.
Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, 980-8572, Sendai, Japan.
Sci Rep. 2018 Dec 21;8(1):18054. doi: 10.1038/s41598-018-36441-w.
We propose germanium-vacancy complexes (GeV) as a viable ingredient to exploit single-atom quantum effects in silicon devices at room temperature. Our predictions, motivated by the high controllability of the location of the defect via accurate single-atom implantation techniques, are based on ab-initio Density Functional Theory calculations within a parameterfree screened-dependent hybrid functional scheme, suitable to provide reliable bandstructure energies and defect-state wavefunctions. The resulting defect-related excited states, at variance with those arising from conventional dopants such as phosphorous, turn out to be deep enough to ensure device operation up to room temperature and exhibit a far more localized wavefunction.
我们提出锗空位复合体(GeV)作为一种可行的成分,用于在室温下利用硅器件中的单原子量子效应。我们的预测基于精确的单原子注入技术对缺陷位置的高度可控性,这些预测是基于无参数屏蔽依赖混合泛函方案内的从头算密度泛函理论计算,该方案适合提供可靠的能带结构能量和缺陷态波函数。与由诸如磷等传统掺杂剂产生的激发态不同,由此产生的与缺陷相关的激发态足够深,以确保器件在室温下运行,并表现出更加局域化的波函数。