Suppr超能文献

神经嵴的特化与形成:谱系分离的观点

Specification and formation of the neural crest: Perspectives on lineage segregation.

作者信息

Prasad Maneeshi S, Charney Rebekah M, García-Castro Martín I

机构信息

Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California.

出版信息

Genesis. 2019 Jan;57(1):e23276. doi: 10.1002/dvg.23276. Epub 2019 Jan 15.

Abstract

The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the formation of the vertebrate head, and are thought to be a key attribute at the center of vertebrate evolution and diversity. Further, aberrant neural crest cell development and differentiation is the root cause of many human pathologies, including cancers, rare syndromes, and birth malformations. In this review, we discuss the current findings of neural crest cell ontogeny, and consider tissue, cell, and molecular contributions toward neural crest formation. We further provide current perspectives into the molecular network involved during the segregation of the neural crest lineage.

摘要

神经嵴是脊椎动物特有的一类迷人的胚胎细胞群,具有显著的分化能力。神经嵴细胞被认为起源于外胚层组织,可产生外周神经系统的神经元和神经胶质细胞,以及遍布全身的黑素细胞。然而,神经嵴在颅区还产生许多外胚间充质衍生物,包括被认为是中胚层起源的细胞类型,如软骨、骨和脂肪组织。这些外胚间充质衍生物在脊椎动物头部的形成中起关键作用,被认为是脊椎动物进化和多样性核心的一个关键特征。此外,神经嵴细胞发育和分化异常是许多人类疾病的根本原因,包括癌症、罕见综合征和出生缺陷。在这篇综述中,我们讨论了神经嵴细胞个体发生的当前研究结果,并考虑了组织、细胞和分子对神经嵴形成的贡献。我们还进一步提供了关于神经嵴谱系分离过程中涉及的分子网络的当前观点。

相似文献

1
Specification and formation of the neural crest: Perspectives on lineage segregation.
Genesis. 2019 Jan;57(1):e23276. doi: 10.1002/dvg.23276. Epub 2019 Jan 15.
2
Neurocristopathies: New insights 150 years after the neural crest discovery.
Dev Biol. 2018 Dec 1;444 Suppl 1:S110-S143. doi: 10.1016/j.ydbio.2018.05.013. Epub 2018 May 23.
4
Specification and patterning of neural crest cells during craniofacial development.
Brain Behav Evol. 2005;66(4):266-80. doi: 10.1159/000088130.
5
Assembling neural crest regulatory circuits into a gene regulatory network.
Annu Rev Cell Dev Biol. 2010;26:581-603. doi: 10.1146/annurev.cellbio.042308.113245.
7
[Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
Biol Aujourdhui. 2011;205(1):53-61. doi: 10.1051/jbio/2011008. Epub 2011 Apr 19.
8
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest.
Dev Biol. 2018 Dec 1;444 Suppl 1:S67-S78. doi: 10.1016/j.ydbio.2018.03.016. Epub 2018 Mar 20.
9
The neural border: Induction, specification and maturation of the territory that generates neural crest cells.
Dev Biol. 2018 Dec 1;444 Suppl 1:S36-S46. doi: 10.1016/j.ydbio.2018.05.018. Epub 2018 May 29.
10
Early expression of Tubulin Beta-III in avian cranial neural crest cells.
Gene Expr Patterns. 2019 Dec;34:119067. doi: 10.1016/j.gep.2019.119067. Epub 2019 Jul 29.

引用本文的文献

1
Human ectodermal organoids reveal the cellular origin of DiGeorge Syndrome.
bioRxiv. 2025 Aug 8:2025.08.08.669417. doi: 10.1101/2025.08.08.669417.
5
The primary cilia: Orchestrating cranial neural crest cell development.
Differentiation. 2025 Mar-Apr;142:100818. doi: 10.1016/j.diff.2024.100818. Epub 2024 Oct 30.
6
Modeling of skeletal development and diseases using human pluripotent stem cells.
J Bone Miner Res. 2024 Dec 31;40(1):5-19. doi: 10.1093/jbmr/zjae178.
7
TGF-β signaling in the cranial neural crest affects late-stage mandibular bone resorption and length.
Front Physiol. 2024 Oct 15;15:1435594. doi: 10.3389/fphys.2024.1435594. eCollection 2024.
8
Research progress of orbital fat in histology and cytology: A review.
Medicine (Baltimore). 2024 Jul 26;103(30):e39040. doi: 10.1097/MD.0000000000039040.
9
TGF-β Signaling in Cranial Neural Crest Affects Late-Stage Mandibular Bone Resorption and Length.
bioRxiv. 2024 May 24:2024.05.24.595783. doi: 10.1101/2024.05.24.595783.

本文引用的文献

2
Historical perspective on neuroembryology: Wilhelm His and his contemporaries.
Genesis. 2018 Jun;56(6-7):e23218. doi: 10.1002/dvg.23218.
3
Gli2 is required for the induction and migration of Xenopus laevis neural crest.
Mech Dev. 2018 Dec;154:219-239. doi: 10.1016/j.mod.2018.07.010. Epub 2018 Aug 4.
4
The molecular basis of neural crest axial identity.
Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S170-S180. doi: 10.1016/j.ydbio.2018.07.026. Epub 2018 Jul 31.
6
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling.
Dev Biol. 2018 Oct 1;442(1):162-172. doi: 10.1016/j.ydbio.2018.07.011. Epub 2018 Jul 17.
8
Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction.
PLoS Biol. 2018 Jun 27;16(6):e2004425. doi: 10.1371/journal.pbio.2004425. eCollection 2018 Jun.
9
Early specification and development of rabbit neural crest cells.
Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S181-S192. doi: 10.1016/j.ydbio.2018.06.012. Epub 2018 Jun 20.
10
Neurocristopathies: New insights 150 years after the neural crest discovery.
Dev Biol. 2018 Dec 1;444 Suppl 1:S110-S143. doi: 10.1016/j.ydbio.2018.05.013. Epub 2018 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验