Suppr超能文献

经颅运动皮层阳极重复经颅磁刺激可在步态期间诱导活动依赖性皮质脊髓可塑性,从而改变人类步态。

Anodal transcranial patterned stimulation of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter human gait.

机构信息

Department of Rehabilitation Medicine, Hokkaido University Hospital, Sapporo, Japan.

Human Brain Research Center, Graduate school of Medicine, Kyoto University, Kyoto, Japan.

出版信息

PLoS One. 2018 Dec 21;13(12):e0208691. doi: 10.1371/journal.pone.0208691. eCollection 2018.

Abstract

The corticospinal system and local spinal circuits control human bipedal locomotion. The primary motor cortex is phase-dependently activated during gait; this cortical input is critical for foot flexor activity during the swing phase. We investigated whether gait-combined rhythmic brain stimulation can induce neuroplasticity in the foot area of the motor cortex and alter gait parameters. Twenty-one healthy subjects participated in the single-blinded, cross-over study. Each subject received anodal transcranial patterned direct current stimulation over the foot area of the right motor cortex during gait, sham stimulation during gait, and anodal transcranial patterned direct current stimulation during rest in a random order. Six subjects were excluded due to a failure in the experimental recording procedure. Complete-case analysis was performed using the data from the remaining 15 subjects. Self-paced gait speed and left leg stride length were significantly increased after the stimulation during gait, but not after the sham stimulation during gait or the stimulation during rest. In addition, a significant increase was found in the excitability of the corticospinal pathway of the left tibialis anterior muscle 30 min after stimulation during gait. Anodal transcranial patterned direct current stimulation during gait entrained the gait cycle to enhance motor cortical activity in some subjects. These findings suggest that the stimulation during gait induced neuroplasticity in corticospinal pathways driving flexor muscles during gait.

摘要

皮质脊髓系统和局部脊髓回路控制着人类的双足步态运动。初级运动皮层在步态中呈现相位依赖性激活;这种皮质输入对于摆动相期间的足屈肌活动至关重要。我们研究了步态结合节律性脑刺激是否可以诱导运动皮层足部区域的神经可塑性,并改变步态参数。21 名健康受试者参与了这项单盲、交叉研究。每个受试者在随机顺序下分别接受了右侧运动皮层足部区域的经颅直流电刺激、步态中的假刺激和休息时的经颅直流电刺激。由于实验记录过程失败,有 6 名受试者被排除在外。使用其余 15 名受试者的数据进行完整病例分析。刺激期间的步态后,自主步行速度和左腿步长显著增加,但步态中的假刺激或休息时的刺激后没有增加。此外,在刺激后 30 分钟,左胫骨前肌的皮质脊髓通路兴奋性显著增加。步态中的经颅直流电刺激使步态周期同步,从而增强了一些受试者的运动皮层活动。这些发现表明,步态中的刺激诱导了与步态中屈肌运动相关的皮质脊髓通路的神经可塑性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3138/6303011/606f0e8cda74/pone.0208691.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验