Suppr超能文献

识别基于本体的知识库构建原则:一种案例研究方法。

Identifying Principles for the Construction of an Ontology-Based Knowledge Base: A Case Study Approach.

作者信息

Jing Xia, Hardiker Nicholas R, Kay Stephen, Gao Yongsheng

机构信息

Department of Social and Public Health, College of Health Sciences and Professions, Ohio University, Athens, OH, United States.

School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom.

出版信息

JMIR Med Inform. 2018 Dec 21;6(4):e52. doi: 10.2196/medinform.9979.

Abstract

BACKGROUND

Ontologies are key enabling technologies for the Semantic Web. The Web Ontology Language (OWL) is a semantic markup language for publishing and sharing ontologies.

OBJECTIVE

The supply of customizable, computable, and formally represented molecular genetics information and health information, via electronic health record (EHR) interfaces, can play a critical role in achieving precision medicine. In this study, we used cystic fibrosis as an example to build an Ontology-based Knowledge Base prototype on Cystic Fibrobis (OntoKBCF) to supply such information via an EHR prototype. In addition, we elaborate on the construction and representation principles, approaches, applications, and representation challenges that we faced in the construction of OntoKBCF. The principles and approaches can be referenced and applied in constructing other ontology-based domain knowledge bases.

METHODS

First, we defined the scope of OntoKBCF according to possible clinical information needs about cystic fibrosis on both a molecular level and a clinical phenotype level. We then selected the knowledge sources to be represented in OntoKBCF. We utilized top-to-bottom content analysis and bottom-up construction to build OntoKBCF. Protégé-OWL was used to construct OntoKBCF. The construction principles included (1) to use existing basic terms as much as possible; (2) to use intersection and combination in representations; (3) to represent as many different types of facts as possible; and (4) to provide 2-5 examples for each type. HermiT 1.3.8.413 within Protégé-5.1.0 was used to check the consistency of OntoKBCF.

RESULTS

OntoKBCF was constructed successfully, with the inclusion of 408 classes, 35 properties, and 113 equivalent classes. OntoKBCF includes both atomic concepts (such as amino acid) and complex concepts (such as "adolescent female cystic fibrosis patient") and their descriptions. We demonstrated that OntoKBCF could make customizable molecular and health information available automatically and usable via an EHR prototype. The main challenges include the provision of a more comprehensive account of different patient groups as well as the representation of uncertain knowledge, ambiguous concepts, and negative statements and more complicated and detailed molecular mechanisms or pathway information about cystic fibrosis.

CONCLUSIONS

Although cystic fibrosis is just one example, based on the current structure of OntoKBCF, it should be relatively straightforward to extend the prototype to cover different topics. Moreover, the principles underpinning its development could be reused for building alternative human monogenetic diseases knowledge bases.

摘要

背景

本体是语义网的关键支撑技术。网络本体语言(OWL)是一种用于发布和共享本体的语义标记语言。

目的

通过电子健康记录(EHR)接口提供可定制、可计算且形式化表示的分子遗传学信息和健康信息,在实现精准医学方面可发挥关键作用。在本研究中,我们以囊性纤维化为例,构建了基于本体的囊性纤维化知识库原型(OntoKBCF),以通过EHR原型提供此类信息。此外,我们详细阐述了OntoKBCF构建过程中的构建和表示原则、方法、应用以及所面临的表示挑战。这些原则和方法可在构建其他基于本体的领域知识库时参考和应用。

方法

首先,我们根据囊性纤维化在分子水平和临床表型水平上可能的临床信息需求定义了OntoKBCF的范围。然后,我们选择了要在OntoKBCF中表示的知识来源。我们利用自上而下的内容分析和自下而上的构建方法来构建OntoKBCF。使用Protégé-OWL构建OntoKBCF。构建原则包括:(1)尽可能使用现有的基本术语;(2)在表示中使用交集和组合;(3)尽可能表示多种不同类型的事实;(4)为每种类型提供2 - 5个示例。使用Protégé-5.1.0中的HermiT 1.3.8.413检查OntoKBCF的一致性。

结果

OntoKBCF成功构建,包含408个类、35个属性和113个等价类。OntoKBCF既包括原子概念(如氨基酸)和复杂概念(如“青春期女性囊性纤维化患者”)及其描述。我们证明了OntoKBCF可以通过EHR原型自动提供可定制的分子和健康信息并使其可用。主要挑战包括更全面地描述不同患者群体,以及表示不确定知识、模糊概念、否定陈述以及关于囊性纤维化更复杂和详细的分子机制或途径信息。

结论

尽管囊性纤维化只是一个例子,但基于OntoKBCF的当前结构,将原型扩展以涵盖不同主题应该相对简单。此外,其开发所依据的原则可用于构建其他人类单基因疾病知识库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb61/6320437/d10703970ef3/medinform_v6i4e52_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验