Suppr超能文献

CFSBoost:用于药物-靶标相互作用预测的累积特征子空间提升。

CFSBoost: Cumulative feature subspace boosting for drug-target interaction prediction.

机构信息

Department of Computer Science and Engineering, United International University, Bangladesh.

Department of Computer Science and Engineering, United International University, Bangladesh.

出版信息

J Theor Biol. 2019 Mar 7;464:1-8. doi: 10.1016/j.jtbi.2018.12.024. Epub 2018 Dec 19.

Abstract

Drug target interaction prediction is a very labor-intensive and expensive experimental process which has motivated researchers to focus on in silico prediction to provide information on potential interaction. In recent years, researchers have proposed several computational approaches for predicting new drug target interactions. In this paper, we present CFSBoost, a simple and computationally cheap ensemble boosting classification model for identification and prediction of drug-target interactions using evolutionary and structural features. CFSBoost uses a simple yet novel feature group selection procedure which allows the model to be computationally very cheap while being able to achieve state of the art performance. The ensemble model uses extra tree as weak learners inside a boosting scheme while holding on to the best model per iteration. We tested our method of four benchmark datasets, which are also referred as gold standard datasets. Our method was able to achieve better score in terms of area under receiver operating characteristic (auROC) curve on 2 out of the 4 datasets. It was also able to achieve higher area under precision recall (auPR) curve on 3 out of the 4 datasets. It has been argued by researchers that auPR metric is more suitable than auROC for comparison of performance on imbalanced datasets such our benchmark datasets. Our reported result shows that, despite of its simplicity in design, CFSBoost's performance is very satisfactory comparing to other literatures. We also provide 5 new possible interactions for each dataset based on CFSBoost's prediction score.

摘要

药物靶点相互作用预测是一个非常耗费人力和财力的实验过程,这促使研究人员专注于基于计算的预测,以提供潜在相互作用的信息。近年来,研究人员提出了几种计算方法来预测新的药物靶点相互作用。在本文中,我们提出了 CFSBoost,这是一种简单且计算成本低的集成提升分类模型,用于使用进化和结构特征识别和预测药物-靶标相互作用。CFSBoost 使用一种简单而新颖的特征组选择过程,使模型在计算上非常便宜,同时能够实现最先进的性能。该集成模型在提升方案中使用 Extra Tree 作为弱学习者,同时保留每个迭代的最佳模型。我们在四个基准数据集(也称为黄金标准数据集)上测试了我们的方法。我们的方法在其中两个数据集上的接收者操作特征(auROC)曲线下面积方面取得了更好的分数。在其中三个数据集上,它也能够在精度召回曲线下面积(auPR)方面取得更高的分数。研究人员认为,对于不平衡数据集(如我们的基准数据集)的性能比较,auPR 度量比 auROC 更合适。我们报告的结果表明,尽管 CFSBoost 的设计简单,但与其他文献相比,其性能非常令人满意。我们还根据 CFSBoost 的预测得分,为每个数据集提供了 5 个新的可能相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验