Department of Computuer Science and Engineering, United International University, House 80, Road 8A, Dhanmondi, Dhaka, 1209, Bangladesh.
Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran.
Sci Rep. 2017 Dec 18;7(1):17731. doi: 10.1038/s41598-017-18025-2.
Prediction of new drug-target interactions is critically important as it can lead the researchers to find new uses for old drugs and to disclose their therapeutic profiles or side effects. However, experimental prediction of drug-target interactions is expensive and time-consuming. As a result, computational methods for predictioning new drug-target interactions have gained a tremendous interest in recent times. Here we present iDTI-ESBoost, a prediction model for identification of drug-target interactions using evolutionary and structural features. Our proposed method uses a novel data balancing and boosting technique to predict drug-target interaction. On four benchmark datasets taken from a gold standard data, iDTI-ESBoost outperforms the state-of-the-art methods in terms of area under receiver operating characteristic (auROC) curve. iDTI-ESBoost also outperforms the latest and the best-performing method found in the literature in terms of area under precision recall (auPR) curve. This is significant as auPR curves are argued as suitable metric for comparison for imbalanced datasets similar to the one studied here. Our reported results show the effectiveness of the classifier, balancing methods and the novel features incorporated in iDTI-ESBoost. iDTI-ESBoost is a novel prediction method that has for the first time exploited the structural features along with the evolutionary features to predict drug-protein interactions. We believe the excellent performance of iDTI-ESBoost both in terms of auROC and auPR would motivate the researchers and practitioners to use it to predict drug-target interactions. To facilitate that, iDTI-ESBoost is implemented and made publicly available at: http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/ .
预测新的药物-靶标相互作用至关重要,因为它可以帮助研究人员发现旧药物的新用途,并揭示它们的治疗特性或副作用。然而,药物-靶标相互作用的实验预测既昂贵又耗时。因此,最近计算方法预测新的药物-靶标相互作用引起了极大的关注。在这里,我们提出了 iDTI-ESBoost,这是一种使用进化和结构特征识别药物-靶标相互作用的预测模型。我们提出的方法使用了一种新颖的数据平衡和提升技术来预测药物-靶标相互作用。在从黄金标准数据中获取的四个基准数据集上,iDTI-ESBoost 在接收器操作特性曲线下的面积(auROC)方面优于最先进的方法。在精度召回曲线下的面积(auPR)方面,iDTI-ESBoost 也优于文献中最新的和表现最好的方法。这很重要,因为 auPR 曲线被认为是适合与这里研究的类似不平衡数据集进行比较的指标。我们报告的结果表明了分类器、平衡方法和 iDTI-ESBoost 中包含的新颖特征的有效性。iDTI-ESBoost 是一种新颖的预测方法,它首次利用结构特征和进化特征来预测药物-蛋白相互作用。我们相信 iDTI-ESBoost 在 auROC 和 auPR 方面的优异性能将激励研究人员和从业者使用它来预测药物-靶标相互作用。为了促进这一点,iDTI-ESBoost 已被实现并在以下网址公开可用:http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/。