Suppr超能文献

基于多种分类策略的药物-靶标相互作用预测。

Drug-target interaction prediction via multiple classification strategies.

机构信息

Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China.

出版信息

BMC Bioinformatics. 2022 Jan 20;22(Suppl 12):461. doi: 10.1186/s12859-021-04366-3.

Abstract

BACKGROUND

Computational prediction of the interaction between drugs and protein targets is very important for the new drug discovery, as the experimental determination of drug-target interaction (DTI) is expensive and time-consuming. However, different protein targets are with very different numbers of interactions. Specifically, most interactions focus on only a few targets. As a result, targets with larger numbers of interactions could own enough positive samples for predicting their interactions but the positive samples for targets with smaller numbers of interactions could be not enough. Only using a classification strategy may not be able to deal with the above two cases at the same time. To overcome the above problem, in this paper, a drug-target interaction prediction method based on multiple classification strategies (MCSDTI) is proposed. In MCSDTI, targets are firstly divided into two parts according to the number of interactions of the targets, where one part contains targets with smaller numbers of interactions (TWSNI) and another part contains targets with larger numbers of interactions (TWLNI). And then different classification strategies are respectively designed for TWSNI and TWLNI to predict the interaction. Furthermore, TWSNI and TWLNI are evaluated independently, which can overcome the problem that result could be mainly determined by targets with large numbers of interactions when all targets are evaluated together.

RESULTS

We propose a new drug-target interaction (MCSDTI) prediction method, which uses multiple classification strategies. MCSDTI is tested on five DTI datasets, such as nuclear receptors (NR), ion channels (IC), G protein coupled receptors (GPCR), enzymes (E), and drug bank (DB). Experiments show that the AUCs of our method are respectively 3.31%, 1.27%, 2.02%, 2.02% and 1.04% higher than that of the second best methods on NR, IC, GPCR and E for TWLNI; And AUCs of our method are respectively 1.00%, 3.20% and 2.70% higher than the second best methods on NR, IC, and E for TWSNI.

CONCLUSION

MCSDTI is a competitive method compared to the previous methods for all target parts on most datasets, which administrates that different classification strategies for different target parts is an effective way to improve the effectiveness of DTI prediction.

摘要

背景

药物与蛋白质靶标之间相互作用的计算预测对于新药发现非常重要,因为药物-靶标相互作用(DTI)的实验测定既昂贵又耗时。然而,不同的蛋白质靶标具有非常不同数量的相互作用。具体来说,大多数相互作用集中在少数几个靶标上。因此,具有较多相互作用的靶标拥有足够的阳性样本可以用于预测它们的相互作用,而具有较少相互作用的靶标可能没有足够的阳性样本。仅使用分类策略可能无法同时处理上述两种情况。为了克服上述问题,本文提出了一种基于多种分类策略(MCSDTI)的药物-靶标相互作用预测方法。在 MCSDTI 中,首先根据靶标的相互作用数量将靶标分为两部分,一部分包含相互作用数量较少的靶标(TWSNI),另一部分包含相互作用数量较多的靶标(TWLNI)。然后,分别为 TWSNI 和 TWLNI 设计不同的分类策略来预测相互作用。此外,TWSNI 和 TWLNI 是独立评估的,这可以克服当所有靶标一起评估时,结果主要由具有较多相互作用的靶标决定的问题。

结果

我们提出了一种新的药物-靶标相互作用(MCSDTI)预测方法,该方法使用多种分类策略。我们在五个 DTI 数据集(核受体(NR)、离子通道(IC)、G 蛋白偶联受体(GPCR)、酶(E)和药物库(DB))上测试了 MCSDTI。实验表明,对于 TWLNI,我们的方法在 NR、IC、GPCR 和 E 上的 AUC 分别比第二好的方法高 3.31%、1.27%、2.02%和 2.02%;对于 TWSNI,我们的方法在 NR、IC 和 E 上的 AUC 分别比第二好的方法高 1.00%、3.20%和 2.70%。

结论

与之前的方法相比,MCSDTI 是一种具有竞争力的方法,适用于大多数数据集的所有靶标部分,这表明对于不同的靶标部分使用不同的分类策略是提高 DTI 预测效果的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c7/8772044/19b9dc8065f2/12859_2021_4366_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验