Suppr超能文献

基于加速度计的活动监测器的校准与验证:机器学习方法的系统综述

Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches.

作者信息

Farrahi Vahid, Niemelä Maisa, Kangas Maarit, Korpelainen Raija, Jämsä Timo

机构信息

Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.

Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Infotech, University of Oulu, Oulu, Finland; Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.

出版信息

Gait Posture. 2019 Feb;68:285-299. doi: 10.1016/j.gaitpost.2018.12.003. Epub 2018 Dec 5.

Abstract

BACKGROUND

Objective measures using accelerometer-based activity monitors have been extensively used in physical activity (PA) and sedentary behavior (SB) research. To measure PA and SB precisely, the field is shifting towards machine learning-based (ML) approaches for calibration and validation of accelerometer-based activity monitors. Nevertheless, various parameters regarding the use and development of ML-based models, including data type (raw acceleration data versus activity counts), sampling frequency, window size, input features, ML technique, accelerometer placement, and free-living settings, affect the predictive ability of ML-based models. The effects of these parameters on ML-based models have remained elusive, and will be systematically reviewed here. The open challenges were identified and recommendations are made for future studies and directions.

METHOD

We conducted a systematic search of PubMed and Scopus databases to identify studies published before July 2017 that used ML-based techniques for calibration and validation of accelerometer-based activity monitors. Additional articles were manually identified from references in the identified articles.

RESULTS

A total of 62 studies were eligible to be included in the review, comprising 48 studies that calibrated and validated ML-based models for predicting the type and intensity of activities, and 22 studies for predicting activity energy expenditure.

CONCLUSIONS

It appears that various ML-based techniques together with raw acceleration data sampled at 20-30 Hz provide the opportunity of predicting the type and intensity of activities, as well as activity energy expenditure with comparable overall predictive accuracies regardless of accelerometer placement. However, the high predictive accuracy of laboratory-calibrated models is not reproducible in free-living settings, due to transitive and unseen activities together with differences in acceleration signals.

摘要

背景

使用基于加速度计的活动监测器的客观测量方法已广泛应用于身体活动(PA)和久坐行为(SB)研究。为了精确测量PA和SB,该领域正转向基于机器学习(ML)的方法,用于基于加速度计的活动监测器的校准和验证。然而,与基于ML的模型的使用和开发相关的各种参数,包括数据类型(原始加速度数据与活动计数)、采样频率、窗口大小、输入特征、ML技术、加速度计放置和自由生活环境,都会影响基于ML的模型的预测能力。这些参数对基于ML的模型的影响仍然不明确,本文将对此进行系统综述。识别了开放挑战,并为未来的研究和方向提出了建议。

方法

我们对PubMed和Scopus数据库进行了系统检索,以识别2017年7月之前发表的使用基于ML的技术对基于加速度计的活动监测器进行校准和验证的研究。从已识别文章的参考文献中手动识别其他文章。

结果

共有62项研究符合纳入综述的条件,其中48项研究校准并验证了用于预测活动类型和强度的基于ML的模型,22项研究用于预测活动能量消耗。

结论

似乎各种基于ML的技术与以20 - 30Hz采样的原始加速度数据一起,提供了预测活动类型和强度以及活动能量消耗的机会,无论加速度计的放置如何,总体预测准确率相当。然而,由于过渡性和未见过的活动以及加速度信号的差异,实验室校准模型的高预测准确率在自由生活环境中无法再现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验