Suppr超能文献

用于身体行为特征描述的机器学习模型的校准与验证:青少年自由生活身体活动(FLPAY)研究的方案与方法

Calibration and Validation of Machine Learning Models for Physical Behavior Characterization: Protocol and Methods for the Free-Living Physical Activity in Youth (FLPAY) Study.

作者信息

LaMunion Samuel Robert, Hibbing Paul Robert, Crouter Scott Edward

机构信息

Diabetes, Endocrinology, and Obesity Branch - Energy Metabolism Section, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States.

Department of Kinesiology, Recreation, and Sports Studies, The University of Tennessee Knoxville, Knoxville, TN, United States.

出版信息

JMIR Res Protoc. 2025 Apr 16;14:e65968. doi: 10.2196/65968.

Abstract

BACKGROUND

Wearable activity monitors are increasingly used to characterize physical behavior. The development and validation of these characterization methods require criterion-labeled data typically collected in a laboratory or simulated free-living environment, which does not generally translate well to free-living due to limited behavior engagement in development that is not representative of free living.

OBJECTIVE

The Free-Living Physical Activity in Youth (FLPAY) study was designed in 2 parts to establish a criterion dataset for novel method development for identifying periods of transition between activities in youth.

METHODS

The FLPAY study used criterion measures of behavior (direct observation) and energy expenditure (indirect calorimetry) to label data from research-grade accelerometer-based devices for the purpose of developing and cross-validating models to identify transitions, classify activity type, and estimate energy expenditure in youth aged 6-18 years. The first part of this study was a simulated free-living protocol in the laboratory, comprising short (roughly 60-90 s) and long (roughly 4-5 min) bouts of 16 activities that were completed in various orders over the span of 2 visits. The second part of this study involved an independent sample of participants who agreed to be measured twice (2 hours each time) in free-living environments such as the home and community.

RESULTS

The FLPAY study was funded from 2016 to 2020. A no-cost extension was granted for 2021. A few secondary outcomes have been published, but extensive analysis of primary data is ongoing.

CONCLUSIONS

The 2-part design of the FLPAY study emphasized the collection of naturalistic behaviors and periods of transition between activities in both structured and unstructured environments. This filled an important gap, considering the traditional focus on scripted activity routines in structured laboratory environments. This protocol paper details the FLPAY procedures and participants, along with details about criterion datasets, which will be useful in future studies analyzing the wealth of device-based data in diverse ways.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/65968.

摘要

背景

可穿戴活动监测器越来越多地用于描述身体行为特征。这些表征方法的开发和验证需要通常在实验室或模拟自由生活环境中收集的标准标记数据,由于开发过程中的行为参与有限且不具有自由生活的代表性,这些数据通常无法很好地转化为自由生活环境中的数据。

目的

青少年自由生活身体活动(FLPAY)研究分两部分设计,旨在为开发识别青少年活动之间过渡时期的新方法建立一个标准数据集。

方法

FLPAY研究使用行为(直接观察)和能量消耗(间接量热法)的标准测量方法,为基于研究级加速度计的设备标记数据,目的是开发和交叉验证模型,以识别过渡、分类活动类型并估计6至十八岁青少年的能量消耗。本研究的第一部分是在实验室进行的模拟自由生活方案,包括16种活动的短(约60 - 90秒)和长(约4 - 5分钟)时段,在两次访问期间以不同顺序完成。本研究的第二部分涉及一个独立的参与者样本,他们同意在家庭和社区等自由生活环境中接受两次测量(每次2小时)。

结果

FLPAY研究于2016年至2020年获得资助。2021年获得了无成本延期。一些次要结果已经发表,但对主要数据的广泛分析仍在进行中。

结论

FLPAY研究的两部分设计强调了在结构化和非结构化环境中收集自然行为和活动之间的过渡时期数据。考虑到传统上对结构化实验室环境中脚本化活动常规的关注,这填补了一个重要空白。本方案文件详细介绍了FLPAY程序和参与者,以及标准数据集的详细信息,这将有助于未来以各种方式分析大量基于设备的数据的研究。

国际注册报告识别码(IRRID):RR1 - 10.2196/65968。

相似文献

本文引用的文献

9
Youth Metabolic Equivalents Differ Depending on Operational Definitions.青年代谢当量因操作定义而异。
Med Sci Sports Exerc. 2020 Aug;52(8):1846-1853. doi: 10.1249/MSS.0000000000002299.
10
Accelerometry data in health research: challenges and opportunities.健康研究中的加速度计数据:挑战与机遇
Stat Biosci. 2019 Jul;11(2):210-237. doi: 10.1007/s12561-018-9227-2. Epub 2019 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验