Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Institute of Neuroscience, University of Nizhny Novgorod, Nizhny Novgorod, Russia.
Cell Calcium. 2019 Mar;78:15-25. doi: 10.1016/j.ceca.2018.12.007. Epub 2018 Dec 17.
Ca influx through an astrocyte plasma membrane is mediated by ionotropic receptors and Ca channels according the electrochemical gradient. These conductances allow astrocytes to sense the levels of neuronal activity and environmental changes. Na/Ca exchanger (NCX) removes elevated Ca from the cell but can reverse and bring Ca in. Ca entry through the plasma membrane produces local Ca elevations that can be further amplified by Ca induced activation of inositol-3-phosphate (IP) receptors and subsequent Ca release from intracellular Ca stores. These Ca stores are located in astrocytic processes called branchlets, while perisynaptic astrocytic processes are formed by organelle-free leaflets. Such morphological structure suggests separate synaptic and extrasynaptic mechanisms of Ca signaling in astrocytes. Astrocytic leaflets sense synaptic activity, astrocytic branchlets integrate signals arriving from the leaflets and from extrasynaptic inputs. The surface-to-volume ratio (SVR) of the branchlets sets the threshold for generation of spreading Ca events. Therefore, morphological remodeling of the processes is an important regulator of astrocytic Ca activity. Ca events can propagate beyond single astrocytes and form complex spatiotemporal patterns of Ca activity in the astrocytic network. Ca events spread intercellularly through gap-junctions and via extracellular ATP diffusion. Spatially and temporarily organized Ca events in astrocytic network influence variable numbers of synapses and neuronal compartments, gate excitation flow and synaptic plasticity in the neuronal network through the release of gliotransmitters. Thus, multiple patterns of Ca activity in the astrocytic network (guiding templates) determine multiple states of the neuronal network. This phenomenon may be linked to learning, memory and information processing in the brain.
钙离子通过星形胶质细胞膜的流入是由离子型受体和钙通道根据电化学梯度介导的。这些电导允许星形胶质细胞感知神经元活动水平和环境变化。钠钙交换器(NCX)从细胞中去除升高的钙,但可以反向并带入钙。通过质膜进入的钙产生局部钙升高,这些升高可以通过钙诱导的肌醇-3-磷酸(IP)受体的激活和随后从细胞内钙库中释放钙进一步放大。这些钙库位于称为小枝的星形胶质细胞突起中,而突触周星形胶质细胞突起由无细胞器的小叶形成。这种形态结构表明星形胶质细胞中存在单独的突触和 extrasynaptic Ca 信号传导机制。星形胶质细胞小叶感知突触活动,星形胶质细胞小枝整合来自小叶和 extrasynaptic 输入的信号。小枝的表面积与体积比(SVR)设定了产生扩散 Ca 事件的阈值。因此,突起的形态重塑是星形胶质细胞 Ca 活性的重要调节因子。Ca 事件可以在单个星形胶质细胞之外传播,并在星形胶质细胞网络中形成复杂的时空 Ca 活动模式。Ca 事件通过缝隙连接在细胞间传播,并通过细胞外 ATP 扩散。星形胶质细胞网络中空间和时间组织的 Ca 事件影响神经元网络中可变数量的突触和神经元区室,通过释放神经胶质递质调节兴奋流和突触可塑性。因此,星形胶质细胞网络中的多种 Ca 活动模式(引导模板)决定了神经元网络的多种状态。这种现象可能与大脑中的学习、记忆和信息处理有关。