Department of Animal Physiology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany.
Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
Curr Biol. 2019 Jan 7;29(1):1-12.e7. doi: 10.1016/j.cub.2018.11.016. Epub 2018 Dec 20.
In large limbs, changing motor neuron activity typically controls within-movement velocity. For example, sequential agonist-antagonist-agonist motor neuron firing typically underlies the slowing often present at the end of human reaches. In physiological movements of large limbs, antagonistic muscle passive torque is generally negligible. In small limbs, alternatively, passive torques can determine limb rest position, generate restoring movements to it, and decrease agonist-generated movement amplitude and velocity maxima. These observations suggest that, in small limbs, passive forces might also control velocity changes within movements. We investigated this issue in stick insect middle leg femur-tibia (FT) joint. During swing, the FT joint extensor muscle actively shortens and the flexor muscle passively lengthens. As in human reaching, after its initial acceleration, FT joint velocity continuously decreases. We measured flexor passive forces during imposed stretches spanning the ranges of FT joint angles, angular velocities, and movement amplitudes present in leg swings. The viscoelastic "transient" passive force that occurs during and soon after stretch depended on all three variables and could be tens of times larger than the "steady-state" passive force commonly measured long after stretch end. We combined these data, the flexor and extensor moment arms, and an existing extensor model to simulate FT joint swing. To measure only passive (flexor) muscle-dependent effects, we used constant extensor activations in these simulations. In simulations using data from ten flexor muscles, flexor passive torque could always produce swings with, after swing initiation, continuously decreasing velocities. Antagonist muscle passive torques alone can thus control within-movement velocity.
在大型肢体中,改变运动神经元的活动通常可以控制运动过程中的速度。例如,在人类的伸手运动中,典型的顺序性拮抗剂-激动剂-拮抗剂运动神经元的放电通常会导致末端速度的减慢。在大型肢体的生理运动中,拮抗肌的被动扭矩通常可以忽略不计。相比之下,在小型肢体中,被动扭矩可以决定肢体的静止位置,产生向该位置的恢复运动,并减小激动剂产生的运动幅度和速度最大值。这些观察结果表明,在小型肢体中,被动力也可能控制运动过程中的速度变化。我们在竹节虫的中腿股骨-胫骨(FT)关节中研究了这个问题。在摆动过程中,FT 关节的伸肌主动收缩,屈肌被动拉长。与人类的伸手运动一样,FT 关节的速度在初始加速后会连续下降。我们在施加的伸展过程中测量了屈肌的被动力,伸展范围包括 FT 关节的角度、角速度和腿部摆动的运动幅度。伸展过程中和伸展后不久发生的粘弹性“瞬态”被动力取决于所有三个变量,并且可能比伸展结束后很长时间测量的“稳态”被动力大几十倍。我们结合这些数据、屈肌和伸肌的力臂以及现有的伸肌模型来模拟 FT 关节的摆动。为了仅测量被动(屈肌)肌肉相关的影响,我们在这些模拟中使用恒定的伸肌激活。在使用十个屈肌数据的模拟中,屈肌的被动扭矩总是可以产生在摆动开始后速度连续下降的摆动。因此,单独的拮抗肌的被动扭矩可以控制运动过程中的速度。