Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.
Atlanta Veterans Affairs Medical Center, Decatur, Georgia.
Antioxid Redox Signal. 2019 Oct 20;31(12):874-897. doi: 10.1089/ars.2018.7695. Epub 2019 Feb 25.
Peroxisome proliferator-activated receptor-gamma (PPARγ) maintains pulmonary vascular health through coordination of antioxidant defense systems, inflammation, and cellular metabolism. Insufficient PPARγ contributes to pulmonary hypertension (PH) pathogenesis, whereas therapeutic restoration of PPARγ activity attenuates PH in preclinical models. Numerous studies in the past decade have elucidated the complex mechanisms by which PPARγ in the pulmonary vasculature and right ventricle (RV) protects against PH. The scope of PPARγ-interconnected pathways continues to expand and includes induction of antioxidant genes, transrepression of inflammatory signaling, regulation of mitochondrial biogenesis and bioenergetic integrity, control of cell cycle and proliferation, and regulation of vascular tone through interactions with nitric oxide and endogenous vasoactive molecules. Furthermore, PPARγ interacts with an extensive regulatory network of transcription factors and microRNAs leading to broad impact on cell signaling. Abundant evidence suggests that targeting PPARγ exerts diverse salutary effects in PH and represents a novel and potentially translatable therapeutic strategy. However, progress has been slowed by an incomplete understanding of how specific PPARγ pathways are critically disrupted across PH disease subtypes and lack of optimal pharmacological ligands. Recent studies indicate that ligand-induced post-translational modifications of the PPARγ receptor differentially induce therapeutic benefits adverse side effects of PPARγ receptor activation. Strategies to selectively target PPARγ activity in diseased cells of pulmonary circulation and RV, coupled with development of ligands designed to specifically regulate post-translational PPARγ modifications, may unlock the full therapeutic potential of this versatile master transcriptional and metabolic regulator in PH.
过氧化物酶体增殖物激活受体-γ(PPARγ)通过协调抗氧化防御系统、炎症和细胞代谢来维持肺血管健康。PPARγ 不足会导致肺动脉高压(PH)发病,而恢复 PPARγ 活性的治疗方法可减轻临床前模型中的 PH。过去十年中的许多研究阐明了 PPARγ 在肺血管和右心室(RV)中防止 PH 的复杂机制。PPARγ 相互关联的途径的范围继续扩大,包括诱导抗氧化基因、抑制炎症信号转导、调节线粒体生物发生和生物能完整性、控制细胞周期和增殖,以及通过与一氧化氮和内源性血管活性分子相互作用来调节血管张力。此外,PPARγ 与转录因子和 microRNAs 的广泛调控网络相互作用,从而对细胞信号产生广泛影响。大量证据表明,靶向 PPARγ 在 PH 中具有多种有益作用,代表了一种新颖且具有潜在转化治疗策略。然而,由于对特定 PPARγ 途径在 PH 疾病亚型中如何受到严重破坏以及缺乏最佳药理学配体的了解不完整,进展一直受到阻碍。最近的研究表明,配体诱导的 PPARγ 受体翻译后修饰会以不同的方式诱导治疗益处和激活 PPARγ 受体的不良反应。选择性针对肺循环和 RV 中患病细胞的 PPARγ 活性的策略,加上设计用于专门调节翻译后 PPARγ 修饰的配体的开发,可能会释放这种多功能主转录和代谢调节剂在 PH 中的全部治疗潜力。