Afouras Triantafyllos, Chung Joon Son, Senior Andrew, Vinyals Oriol, Zisserman Andrew
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):8717-8727. doi: 10.1109/TPAMI.2018.2889052. Epub 2022 Nov 7.
The goal of this work is to recognise phrases and sentences being spoken by a talking face, with or without the audio. Unlike previous works that have focussed on recognising a limited number of words or phrases, we tackle lip reading as an open-world problem - unconstrained natural language sentences, and in the wild videos. Our key contributions are: (1) we compare two models for lip reading, one using a CTC loss, and the other using a sequence-to-sequence loss. Both models are built on top of the transformer self-attention architecture; (2) we investigate to what extent lip reading is complementary to audio speech recognition, especially when the audio signal is noisy; (3) we introduce and publicly release a new dataset for audio-visual speech recognition, LRS2-BBC, consisting of thousands of natural sentences from British television. The models that we train surpass the performance of all previous work on a lip reading benchmark dataset by a significant margin.
这项工作的目标是识别有或没有音频的说话面部所讲的短语和句子。与之前专注于识别有限数量单词或短语的工作不同,我们将唇读视为一个开放世界问题——无约束的自然语言句子以及真实场景视频中的唇读。我们的主要贡献包括:(1)我们比较了两种唇读模型,一种使用连接主义时间分类(CTC)损失,另一种使用序列到序列损失。这两种模型均基于Transformer自注意力架构构建;(2)我们研究了唇读在多大程度上与音频语音识别互补,特别是在音频信号有噪声的情况下;(3)我们引入并公开发布了一个用于视听语音识别的新数据集LRS2 - BBC,它由来自英国电视台的数千个自然句子组成。我们训练的模型在唇读基准数据集上的性能大幅超越了之前所有工作的表现。