Suppr超能文献

基于多模态信息融合的老年髋部骨折患者疼痛自动分类

Automatic pain classification in older patients with hip fracture based on multimodal information fusion.

作者信息

Yang Shuang, Luo Wen, Yang Tao, Chen Xiaoying, Shen Siyi, Wang Lei, Zhao Huiwen, Liu Jun, Huang Liping

机构信息

The 2nd Ward of Hip Joint Surgery, Tianjin Hospital, Tianjin, China.

College of Artificial Intelligence, Hebei University of Technology, Tianjin, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21562. doi: 10.1038/s41598-025-09046-3.

Abstract

Given the limitations of unimodal pain recognition approaches, this study aimed to develop a multimodal pain recognition system for older patients with hip fractures using multimodal information fusion. The proposed system employs ResNet-50 for facial expression analysis and a VGG-based (VGGish) network for audio-based pain recognition. A channel attention mechanism was incorporated to refine feature representations and enhance the model's ability to distinguish between different pain levels. The outputs of the two unimodal systems were then integrated using a weighted-sum fusion strategy to create a unified multimodal pain recognition model. A self-constructed multimodal pain dataset was used for model training and validation, with the data split in an 80:20 ratio. Final testing was conducted using the BioVid Heat Pain Database. The VGGish model, optimized by a LSTM network and the channel attention mechanism, was trained on a hip fracture pain dataset, and the accuracy of the model was maintained at 80% after 500 iterations. The model was subsequently tested on the BioVid heat pain database, Pain grades 2 to 4. The confusion matrix test indicated an accuracy of 85% for Pain grade 4. This study presents the first clinically validated multimodal pain recognition system that integrates facial expression and speech data. The results demonstrate the feasibility and effectiveness of the proposed approach in real-world clinical environments.

摘要

鉴于单峰疼痛识别方法的局限性,本研究旨在利用多模态信息融合为老年髋部骨折患者开发一种多模态疼痛识别系统。所提出的系统采用ResNet-50进行面部表情分析,并采用基于VGG的(VGGish)网络进行基于音频的疼痛识别。引入了通道注意力机制来细化特征表示并增强模型区分不同疼痛程度的能力。然后使用加权和融合策略整合两个单峰系统的输出,以创建一个统一的多模态疼痛识别模型。使用自行构建的多模态疼痛数据集进行模型训练和验证,数据按80:20的比例划分。最终测试使用BioVid热痛数据库进行。通过LSTM网络和通道注意力机制优化的VGGish模型在髋部骨折疼痛数据集上进行训练,经过500次迭代后模型的准确率保持在80%。随后该模型在BioVid热痛数据库上进行测试,疼痛等级为2至4级。混淆矩阵测试表明,4级疼痛的准确率为85%。本研究提出了首个经过临床验证的整合面部表情和语音数据的多模态疼痛识别系统。结果证明了所提出方法在实际临床环境中的可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6dd/12218136/b1e014aed30a/41598_2025_9046_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验