State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
BMC Evol Biol. 2018 Dec 27;18(1):201. doi: 10.1186/s12862-018-1315-x.
Oligoadenylate synthetases (OASs) are widely distributed in Metazoa including sponges, fish, reptiles, birds and mammals and show large variation, with one to twelve members in any given species. Upon double-stranded RNA (dsRNA) binding, avian and mammalian OASs generate the second messenger 2'-5'-linked oligoadenylate (2-5A), which activates ribonuclease L (RNaseL) and blocks viral replication. However, how Metazoa shape their OAS repertoires to keep evolutionary balance to virus infection is largely unknown. We performed comprehensive phylogenetic and functional analyses of OAS genes from evolutionarily lower to higher Metazoa to demonstrate how the OAS repertoires have developed anti-viral activity and diversified their functions.
Ancient Metazoa harbor OAS genes, but lack both upstream and downstream genes of the OAS-related pathways, indicating that ancient OASs are not interferon-induced genes involved in the innate immune system. Compared to OASs of ancient Metazoa (i.e. sponge), the corresponding ones of higher Metazoa present an increasing number of basic residues on the OAS/dsRNA interaction interface. Such an increase of basic residues might improve their binding affinity to dsRNA. Moreover, mutations of functional residues in the active pocket might lead to the fact that higher Metazoan OASs lose the ability to produce 3'-5'-linked oligoadenylate (3-5A) and turn into specific 2-5A synthetases. In addition, we found that multiple rounds of gene duplication and domain coupling events occurred in the OAS family and mutations at functionally critical sites were observed in most new OAS members.
We propose a model for the expansion of OAS members and provide comprehensive evidence of subsequent neo-functionalization and sub-functionalization. Our observations lay the foundation for interrogating the evolutionary transition of ancient OAS genes to host defense genes and provide important information for exploring the unknown function of the OAS gene family.
寡聚腺苷酸合成酶(OASs)广泛分布于后生动物门中,包括海绵动物、鱼类、爬行动物、鸟类和哺乳动物,其数量存在较大差异,在任何给定的物种中都有一到十二个成员。在双链 RNA(dsRNA)结合后,禽类和哺乳动物的 OAS 会产生第二信使 2'-5'-连接寡腺苷酸(2-5A),激活核糖核酸酶 L(RNaseL)并阻止病毒复制。然而,后生动物如何塑造其 OAS 基因库以保持与病毒感染的进化平衡在很大程度上是未知的。我们对后生动物从进化较低到较高的 OAS 基因进行了全面的系统发育和功能分析,以证明 OAS 基因库如何发展抗病毒活性并使其功能多样化。
古老的后生动物拥有 OAS 基因,但缺乏 OAS 相关途径的上下游基因,这表明古老的 OAS 不是干扰素诱导的、参与固有免疫系统的基因。与古老后生动物的 OAS 相比(即海绵动物),较高后生动物的相应 OAS 在 OAS/dsRNA 相互作用界面上具有越来越多的碱性残基。这种碱性残基的增加可能会提高它们与 dsRNA 的结合亲和力。此外,活性口袋中的功能残基的突变可能导致高等后生动物的 OAS 失去产生 3'-5'-连接寡腺苷酸(3-5A)的能力,并转变为特定的 2-5A 合成酶。此外,我们发现 OAS 家族中发生了多轮基因复制和结构域偶联事件,并且在大多数新的 OAS 成员中观察到功能关键位点的突变。
我们提出了一个 OAS 成员扩展的模型,并提供了后续新功能化和亚功能化的综合证据。我们的观察结果为研究古老 OAS 基因向宿主防御基因的进化转变奠定了基础,并为探索 OAS 基因家族的未知功能提供了重要信息。