Institut de la Vision, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, F-75012 Paris, France,
Quinze-Vingts National Ophthalmology Hospital, Sorbonne Université, DHU Sight Restore, Institut National de la Santé et de la Recherche Médicale-DGOS CIC 1423, F-75012 Paris, France, and.
J Neurosci. 2019 Feb 13;39(7):1150-1168. doi: 10.1523/JNEUROSCI.1401-18.2018. Epub 2018 Dec 26.
The cornea has the densest sensory innervation of the body, originating primarily from neurons in the trigeminal ganglion. The basic principles of cornea nerve patterning have been established many years ago using classic neuroanatomical methods, such as immunocytochemistry and electrophysiology. Our understanding of the morphology and distribution of the sensory nerves in the skin has considerably progressed over the past few years through the generation and analysis of a variety of genetically modified mouse lines. Surprisingly, these lines were not used to study corneal axons. Here, we have screened a collection of transgenic and knockin mice (of both sexes) to select lines allowing the visualization and genetic manipulation of corneal nerves. We identified multiple lines, including some in which different types of corneal axons can be simultaneously observed with fluorescent proteins expressed in a combinatorial manner. We also provide the first description of the morphology and arborization of single corneal axons and identify three main types of branching pattern. We applied this genetic strategy to the analysis of corneal nerve development and plasticity. We provide direct evidence for a progressive reduction of the density of corneal innervation during aging. We also show that the semaphorin receptor neuropilin-1 acts cell-autonomously to control the development of corneal axons and that early axon guidance defects have long-term consequences on corneal innervation. We have screened a collection of transgenic and knockin mice and identify lines allowing the visualization and genetic manipulation of corneal nerves. We provide the first description of the arborization pattern of single corneal axons. We also present applications of this genetic strategy to the analysis of corneal nerve development and remodeling during aging.
角膜具有人体最密集的感觉神经支配,主要来源于三叉神经节中的神经元。多年前,我们使用经典的神经解剖学方法,如免疫细胞化学和电生理学,已经确立了角膜神经模式形成的基本原则。通过生成和分析各种基因修饰的小鼠品系,我们对皮肤感觉神经的形态和分布的理解在过去几年中取得了相当大的进展。令人惊讶的是,这些品系并未用于研究角膜轴突。在这里,我们筛选了一系列转基因和基因敲入(雌雄小鼠)的小鼠品系,以选择可用于可视化和遗传操作角膜神经的品系。我们确定了多种品系,包括一些可同时用荧光蛋白以组合方式表达来观察不同类型的角膜轴突的品系。我们还首次描述了单个角膜轴突的形态和分支模式,并确定了三种主要的分支模式类型。我们将这种遗传策略应用于角膜神经发育和可塑性的分析。我们提供了直接证据表明,随着年龄的增长,角膜神经支配的密度逐渐降低。我们还表明,神经丝蛋白受体神经纤毛蛋白-1 以细胞自主的方式控制角膜轴突的发育,并且早期的轴突导向缺陷对角膜神经支配具有长期影响。我们筛选了一系列转基因和基因敲入小鼠,确定了可用于可视化和遗传操作角膜神经的品系。我们首次描述了单个角膜轴突的分支模式。我们还展示了这种遗传策略在分析衰老过程中角膜神经发育和重塑中的应用。