Suppr超能文献

三磷酸腺苷(ATP)结合但不水解将磺酰脲受体 1(SUR1)转换为激活钾通道的外向构象。

ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K channels.

机构信息

From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and.

Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and.

出版信息

J Biol Chem. 2019 Mar 8;294(10):3707-3719. doi: 10.1074/jbc.RA118.005236. Epub 2018 Dec 26.

Abstract

Neuroendocrine-type ATP-sensitive K (K) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2), comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, , values for the conformation-sensitive channel antagonist [H]glibenclamide ([H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's for [H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower for [H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases K channels toward open states, consistent with SUR1 variants with lower values causing neonatal diabetes, whereas increased values cause congenital hyperinsulinism.

摘要

神经内分泌型 ATP 敏感性钾 (K) 通道是代谢物感受器,将膜电位与代谢联系起来,从而将胰岛素分泌与血浆葡萄糖水平联系起来。它们是八聚体复合物,(SUR1/Kir6.2),由磺酰脲受体 1 (SUR1 或 ABCC8) 和一种 K 选择性内向整流 (Kir6.2 或 KCNJ11) 组成。核苷酸、激动剂和拮抗剂结合位点之间的相互作用通过变构影响通道活性。尽管有人假设打开这些通道需要 SUR1 介导的 MgATP 水解,但我们在这里表明,当最小化 Kir6.2 上核苷酸拮抗作用并使用具有增加的 ATP 亲和力的 SUR1 突变体时,ATP 结合 SUR1 而无需水解即可打开通道。我们发现,ATP 结合足以使 SUR1 单独在低或高解离常数下在内向或外向构象之间切换,[H]格列本脲 ([H]GBM) 的构象敏感通道拮抗剂的 值表明 ATP 可以作为纯激动剂发挥作用。与 Kir6.2 组装降低了 SUR1 对 [H]GBM 的 值。这种降低需要 Kir N 末端 (KNtp),这与 KNtp 占据“运输腔”一致,从而将其定位为将 ATP 诱导的 SUR1 构象变化与通道门控联系起来。此外,WT SUR1/WT Kir6.2 通道中 ATP/GBM 位点偶联受到限制;与 ATP 结合的通道对 [H]GBM 的 值低于与 ATP 结合的 SUR1。这种限制主要被 15 号螺旋上的 Q1179R 新生儿糖尿病相关突变消除,这表明“交换”的螺旋对 15 和 16 是连接 ATP/GBM 位点的结构途径的一部分。我们的结果表明,ATP 结合 SUR1 使 K 通道偏向开放状态,这与 SUR1 变体的 值降低导致新生儿糖尿病一致,而 值增加导致先天性高胰岛素血症。

相似文献

1
ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K channels.
J Biol Chem. 2019 Mar 8;294(10):3707-3719. doi: 10.1074/jbc.RA118.005236. Epub 2018 Dec 26.
2
Two neonatal diabetes mutations on transmembrane helix 15 of SUR1 increase affinity for ATP and ADP at nucleotide binding domain 2.
J Biol Chem. 2012 May 25;287(22):17985-95. doi: 10.1074/jbc.M112.349019. Epub 2012 Mar 27.
4
The Kir6.2-F333I mutation differentially modulates KATP channels composed of SUR1 or SUR2 subunits.
J Physiol. 2007 Jun 15;581(Pt 3):1259-69. doi: 10.1113/jphysiol.2007.130211. Epub 2007 Mar 29.
5
Reinterpreting the action of ATP analogs on K(ATP) channels.
J Biol Chem. 2013 Jun 28;288(26):18894-902. doi: 10.1074/jbc.M113.476887. Epub 2013 May 12.
6
Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1.
J Gen Physiol. 2010 Oct;136(4):389-405. doi: 10.1085/jgp.201010475.
8
Differential nucleotide regulation of KATP channels by SUR1 and SUR2A.
J Mol Cell Cardiol. 2005 Sep;39(3):491-501. doi: 10.1016/j.yjmcc.2005.03.009.
9
Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.
J Biol Chem. 2016 Oct 14;291(42):21971-21983. doi: 10.1074/jbc.M116.749366. Epub 2016 Aug 29.
10
N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
J Gen Physiol. 2011 Mar;137(3):299-314. doi: 10.1085/jgp.201010557. Epub 2011 Feb 14.

引用本文的文献

1
Intercellular NETwork-facilitated sarcoplasmic reticulum targeting for myocardial ischemia-reperfusion injury treatment.
Sci Adv. 2025 Feb 14;11(7):eadr4333. doi: 10.1126/sciadv.adr4333. Epub 2025 Feb 12.
3
Dynamic duo: Kir6 and SUR in K channel structure and function.
Channels (Austin). 2024 Dec;18(1):2327708. doi: 10.1080/19336950.2024.2327708. Epub 2024 Mar 15.
5
Mechanistic insights on KATP channel regulation from cryo-EM structures.
J Gen Physiol. 2023 Jan 2;155(1). doi: 10.1085/jgp.202113046. Epub 2022 Nov 28.
6
Development of I Ion Channel Blockers Targeting Sulfonylurea Resistant Mutant K6.2 Based Channels for Treating DEND Syndrome.
Front Pharmacol. 2022 Jan 14;12:814066. doi: 10.3389/fphar.2021.814066. eCollection 2021.
7
Clinical and Genetic Characteristics of Nonneonatal Diabetes Mellitus: A Systematic Review.
J Diabetes Res. 2021 Sep 30;2021:9479268. doi: 10.1155/2021/9479268. eCollection 2021.
8
Possible New Strategies for the Treatment of Congenital Hyperinsulinism.
Front Endocrinol (Lausanne). 2020 Oct 27;11:545638. doi: 10.3389/fendo.2020.545638. eCollection 2020.
9
Mechanism of pharmacochaperoning in a mammalian K channel revealed by cryo-EM.
Elife. 2019 Jul 25;8:e46417. doi: 10.7554/eLife.46417.
10
Glibenclamide and HMR1098 normalize Cantú syndrome-associated gain-of-function currents.
J Cell Mol Med. 2019 Aug;23(8):4962-4969. doi: 10.1111/jcmm.14329. Epub 2019 May 22.

本文引用的文献

1
Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.
Protein Cell. 2018 Jun;9(6):553-567. doi: 10.1007/s13238-018-0530-y. Epub 2018 Mar 28.
2
Neonatal Diabetes Mellitus: An Update on Diagnosis and Management.
Clin Perinatol. 2018 Mar;45(1):41-59. doi: 10.1016/j.clp.2017.10.006. Epub 2017 Dec 16.
3
Molecular structure of human KATP in complex with ATP and ADP.
Elife. 2017 Dec 29;6:e32481. doi: 10.7554/eLife.32481.
4
Anti-diabetic drug binding site in a mammalian K channel revealed by Cryo-EM.
Elife. 2017 Oct 24;6:e31054. doi: 10.7554/eLife.31054.
5
Genetic Variation at the Sulfonylurea Receptor, Type 2 Diabetes, and Coronary Heart Disease.
Diabetes. 2017 Aug;66(8):2310-2315. doi: 10.2337/db17-0149. Epub 2017 Apr 14.
6
Precision diabetes: learning from monogenic diabetes.
Diabetologia. 2017 May;60(5):769-777. doi: 10.1007/s00125-017-4226-2. Epub 2017 Mar 17.
8
Structure of a Pancreatic ATP-Sensitive Potassium Channel.
Cell. 2017 Jan 12;168(1-2):101-110.e10. doi: 10.1016/j.cell.2016.12.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验