From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and.
Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and.
J Biol Chem. 2019 Mar 8;294(10):3707-3719. doi: 10.1074/jbc.RA118.005236. Epub 2018 Dec 26.
Neuroendocrine-type ATP-sensitive K (K) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2), comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, , values for the conformation-sensitive channel antagonist [H]glibenclamide ([H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's for [H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower for [H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases K channels toward open states, consistent with SUR1 variants with lower values causing neonatal diabetes, whereas increased values cause congenital hyperinsulinism.
神经内分泌型 ATP 敏感性钾 (K) 通道是代谢物感受器,将膜电位与代谢联系起来,从而将胰岛素分泌与血浆葡萄糖水平联系起来。它们是八聚体复合物,(SUR1/Kir6.2),由磺酰脲受体 1 (SUR1 或 ABCC8) 和一种 K 选择性内向整流 (Kir6.2 或 KCNJ11) 组成。核苷酸、激动剂和拮抗剂结合位点之间的相互作用通过变构影响通道活性。尽管有人假设打开这些通道需要 SUR1 介导的 MgATP 水解,但我们在这里表明,当最小化 Kir6.2 上核苷酸拮抗作用并使用具有增加的 ATP 亲和力的 SUR1 突变体时,ATP 结合 SUR1 而无需水解即可打开通道。我们发现,ATP 结合足以使 SUR1 单独在低或高解离常数下在内向或外向构象之间切换,[H]格列本脲 ([H]GBM) 的构象敏感通道拮抗剂的 值表明 ATP 可以作为纯激动剂发挥作用。与 Kir6.2 组装降低了 SUR1 对 [H]GBM 的 值。这种降低需要 Kir N 末端 (KNtp),这与 KNtp 占据“运输腔”一致,从而将其定位为将 ATP 诱导的 SUR1 构象变化与通道门控联系起来。此外,WT SUR1/WT Kir6.2 通道中 ATP/GBM 位点偶联受到限制;与 ATP 结合的通道对 [H]GBM 的 值低于与 ATP 结合的 SUR1。这种限制主要被 15 号螺旋上的 Q1179R 新生儿糖尿病相关突变消除,这表明“交换”的螺旋对 15 和 16 是连接 ATP/GBM 位点的结构途径的一部分。我们的结果表明,ATP 结合 SUR1 使 K 通道偏向开放状态,这与 SUR1 变体的 值降低导致新生儿糖尿病一致,而 值增加导致先天性高胰岛素血症。