Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705.
Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705;
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):670-678. doi: 10.1073/pnas.1816724116. Epub 2018 Dec 26.
Despite sharing a common architecture with archetypal voltage-gated ion channels (VGICs), hyperpolarization- and cAMP-activated ion (HCN) channels open upon hyperpolarization rather than depolarization. The basic motions of the voltage sensor and pore gates are conserved, implying that these domains are inversely coupled in HCN channels. Using structure-guided protein engineering, we systematically assembled an array of mosaic channels that display the full complement of voltage-activation phenotypes observed in the VGIC superfamily. Our studies reveal that the voltage sensor of the HCN channel has an intrinsic ability to drive pore opening in either direction and that the extra length of the HCN S4 is not the primary determinant for hyperpolarization activation. Tight interactions at the HCN voltage sensor-pore interface drive the channel into an hERG-like inactivated state, thereby obscuring its opening upon depolarization. This structural element in synergy with the HCN cyclic nucleotide-binding domain and specific interactions near the pore gate biases the channel toward hyperpolarization-dependent opening. Our findings reveal an unexpected common principle underpinning voltage gating in the VGIC superfamily and identify the essential determinants of gating polarity.
尽管与典型的电压门控离子通道 (VGIC) 具有相同的结构,但超极化和 cAMP 激活的离子 (HCN) 通道在超极化时而非去极化时打开。电压传感器和孔门的基本运动是保守的,这意味着这些结构域在 HCN 通道中是反向耦合的。使用结构引导的蛋白质工程,我们系统地组装了一系列镶嵌通道,这些通道显示了在 VGIC 超家族中观察到的所有电压激活表型。我们的研究表明,HCN 通道的电压传感器具有内在的能力,能够在任意方向驱动孔的打开,并且 HCN S4 的额外长度不是超极化激活的主要决定因素。HCN 电压传感器-孔界面的紧密相互作用将通道驱动到 hERG 样失活状态,从而掩盖了其在去极化时的打开。这种结构元素与 HCN 环核苷酸结合结构域协同作用,并在孔门附近的特定相互作用,使通道偏向于超极化依赖性的打开。我们的发现揭示了 VGIC 超家族电压门控的一个意想不到的共同原则,并确定了门控极性的基本决定因素。