Lin Ting-Feng, Jow Guey-Mei, Fang Hsin-Yu, Fu Ssu-Ju, Wu Hao-Han, Chiu Mei-Miao, Jeng Chung-Jiuan
Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, New Taipei City, Taiwan.
PLoS One. 2014 Oct 21;9(10):e110423. doi: 10.1371/journal.pone.0110423. eCollection 2014.
Eag (Kv10) and Erg (Kv11) belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH). While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N)-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1) and human Erg (hERG1) channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.
Eag(Kv10)和Erg(Kv11)属于去极化钾通道家族(KCNH)的两个不同亚家族。虽然Erg通道的特征是具有由C型失活导致的内向整流电流-电压关系,但哺乳动物的Eag通道几乎没有或没有电压依赖性失活。尽管诸如eag结构域的氨基(N)末端区域对于Erg通道的C型失活不是必需的,但已证明小鼠Eag1的N末端缺失会产生电压依赖性失活。为了进一步了解eag结构域在Eag1通道失活中的作用,我们构建了大鼠Eag(rEag1)和人类Erg(hERG1)通道之间的N末端嵌合体,其中涉及单独交换eag结构域或完整的细胞质N末端区域。功能分析表明,引入同源的hERG1 eag结构域导致rEag1嵌合体中通道失活的快速相和缓慢相。相比之下,反向hERG1嵌合体保留了失活特征。此外,缺乏eag结构域的rEag1缺失突变体也显示出失活的快速相,当与rEag1 eag结构域片段共表达时,该快速相明显减弱,但与hERG1 eag结构域片段共表达时则不然。此外,我们在rEag1的S4-S5连接区鉴定出一个点突变,该突变导致了类似的失活表型。对这些突变体构建体的生物物理分析表明,rEag1的失活门控与hERG1明显不同。总体而言,我们的研究结果与eag结构域在调节rEag1的失活门控中起关键作用的观点一致。我们提出,eag结构域可能会破坏或掩盖rEag1钾通道固有的电压依赖性失活。