Suppr超能文献

将铜冷冻作为类贵金属催化剂用于初步氢化。

Freezing copper as a noble metal-like catalyst for preliminary hydrogenation.

作者信息

Sun Jian, Yu Jiafeng, Ma Qingxiang, Meng Fanqiong, Wei Xiaoxuan, Sun Yannan, Tsubaki Noritatsu

机构信息

Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China.

出版信息

Sci Adv. 2018 Dec 21;4(12):eaau3275. doi: 10.1126/sciadv.aau3275. eCollection 2018 Dec.

Abstract

The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO catalysts because of inevitable coexistence of Cu and Cu, leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.

摘要

在多步催化选择性加氢反应中控制产物分布具有挑战性。例如,由于Cu和Cu不可避免地共存,草酸二甲酯(DMO)的深度加氢倾向于在Cu/SiO催化剂上进行,导致难以获得初步加氢产物乙醇酸甲酯(MG)。在此,通过将Cu冷冻在零价态,在溅射(SP)Cu/SiO催化剂上实现了DMO定向加氢生成MG,选择性超过87%。我们的密度泛函理论计算结果表明,Cu是初步加氢步骤的活性位点,通过•H加成将DMO选择性地转化为MG,而Cu是深度加氢的关键因素。从俄歇光谱中观察到,在SP-Cu/SiO上有显著的科斯特-克罗尼格跃迁增强,这表明在SP过程中,高能氩等离子体轰击增强了Cu原子内壳层的电子密度。因此,最外层电子的“穿透效应”也可能增强,使这些Cu纳米颗粒表现出高抗氧化能力,并呈现出类似Au或Ag的贵金属行为。因此,通过改变电子结构来调控Cu的化学性质是控制加氢产物的可行策略,为选择性加氢催化剂的合理设计提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7de3/6303123/d771e8315f15/aau3275-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验