Suppr超能文献

用于粗粒化蛋白质质量评估的具有平滑各向异性的评分函数。

Smooth orientation-dependent scoring function for coarse-grained protein quality assessment.

机构信息

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France.

Center for Energy Systems, Skolkovo Institute of Science and Technology, Moscow, Russia.

出版信息

Bioinformatics. 2019 Aug 15;35(16):2801-2808. doi: 10.1093/bioinformatics/bty1037.

Abstract

MOTIVATION

Protein quality assessment (QA) is a crucial element of protein structure prediction, a fundamental and yet open problem in structural bioinformatics. QA aims at ranking predicted protein models to select the best candidates. The assessment can be performed based either on a single model or on a consensus derived from an ensemble of models. The latter strategy can yield very high performance but substantially depends on the pool of available candidate models, which limits its applicability. Hence, single-model QA methods remain an important research target, also because they can assist the sampling of candidate models.

RESULTS

We present a novel single-model QA method called SBROD. The SBROD (Smooth Backbone-Reliant Orientation-Dependent) method uses only the backbone protein conformation, and hence it can be applied to scoring coarse-grained protein models. The proposed method deduces its scoring function from a training set of protein models. The SBROD scoring function is composed of four terms related to different structural features: residue-residue orientations, contacts between backbone atoms, hydrogen bonding and solvent-solute interactions. It is smooth with respect to atomic coordinates and thus is potentially applicable to continuous gradient-based optimization of protein conformations. Furthermore, it can also be used for coarse-grained protein modeling and computational protein design. SBROD proved to achieve similar performance to state-of-the-art single-model QA methods on diverse datasets (CASP11, CASP12 and MOULDER).

AVAILABILITY AND IMPLEMENTATION

The standalone application implemented in C++ and Python is freely available at https://gitlab.inria.fr/grudinin/sbrod and supported on Linux, MacOS and Windows.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质质量评估(QA)是蛋白质结构预测的一个关键要素,而蛋白质结构预测是结构生物信息学中的一个基本但尚未解决的问题。QA 的目的是对预测的蛋白质模型进行排序,以选择最佳的候选者。评估可以基于单个模型或基于来自模型集合的共识来进行。后一种策略可以产生非常高的性能,但在很大程度上取决于可用候选模型的池,这限制了它的适用性。因此,单模型 QA 方法仍然是一个重要的研究目标,也因为它们可以协助候选模型的采样。

结果

我们提出了一种新的单模型 QA 方法,称为 SBROD。SBROD(平滑骨架依赖取向相关)方法仅使用蛋白质的骨架构象,因此可以应用于评分粗粒化的蛋白质模型。所提出的方法从蛋白质模型的训练集推导出其评分函数。SBROD 评分函数由四个与不同结构特征相关的项组成:残基-残基取向、骨架原子之间的接触、氢键和溶剂-溶质相互作用。它在原子坐标上是平滑的,因此具有潜在的应用于基于梯度的蛋白质构象连续优化的能力。此外,它还可用于粗粒化的蛋白质建模和计算蛋白质设计。SBROD 在各种数据集(CASP11、CASP12 和 MOULDER)上的表现与最先进的单模型 QA 方法相似。

可用性和实现

用 C++和 Python 实现的独立应用程序可在 https://gitlab.inria.fr/grudinin/sbrod 上免费获得,并支持 Linux、MacOS 和 Windows。

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验