Suppr超能文献

接触辅助线程在低同源性蛋白质建模中的应用。

Contact-Assisted Threading in Low-Homology Protein Modeling.

机构信息

Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA.

Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.

出版信息

Methods Mol Biol. 2023;2627:41-59. doi: 10.1007/978-1-0716-2974-1_3.

Abstract

The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.

摘要

近年来,成功地根据蛋白质的氨基酸序列预测其三维结构取得了相当大的进展。这一进展得益于基于深度学习的残基间接触图预测器的准确性提高,以及蛋白质序列数据库的不断增长。接触图编码了原子间相互作用的信息,即使对于不能直接进行同源建模的查询蛋白质,也可以通过接触图穿线来进行高度准确的蛋白质结构预测。因此,接触辅助穿线得到了相当多的研究关注。在本章中,我们提供了现有接触辅助穿线方法的概述,同时强调了最近的进展,并讨论了在应用接触辅助穿线来提高低同源性蛋白质建模准确性方面的一些当前限制和未来前景。

相似文献

5
Template-based prediction of protein structure with deep learning.基于模板的深度学习蛋白质结构预测
BMC Genomics. 2020 Dec 29;21(Suppl 11):878. doi: 10.1186/s12864-020-07249-8.
6
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
10
Protein threading using residue co-variation and deep learning.使用残基共变和深度学习进行蛋白质穿线。
Bioinformatics. 2018 Jul 1;34(13):i263-i273. doi: 10.1093/bioinformatics/bty278.

本文引用的文献

2
Deep template-based protein structure prediction.基于模板的深度蛋白质结构预测。
PLoS Comput Biol. 2021 May 3;17(5):e1008954. doi: 10.1371/journal.pcbi.1008954. eCollection 2021 May.
5
Template-based prediction of protein structure with deep learning.基于模板的深度学习蛋白质结构预测
BMC Genomics. 2020 Dec 29;21(Suppl 11):878. doi: 10.1186/s12864-020-07249-8.
6
Predicting the Real-Valued Inter-Residue Distances for Proteins.预测蛋白质的实值残基间距离
Adv Sci (Weinh). 2020 Aug 10;7(19):2001314. doi: 10.1002/advs.202001314. eCollection 2020 Oct.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验