Suppr超能文献

SVMQA:基于支持向量机的蛋白质单模型质量评估。

SVMQA: support-vector-machine-based protein single-model quality assessment.

作者信息

Manavalan Balachandran, Lee Jooyoung

机构信息

Center for In Silico Protein Science and School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea.

出版信息

Bioinformatics. 2017 Aug 15;33(16):2496-2503. doi: 10.1093/bioinformatics/btx222.

Abstract

MOTIVATION

The accurate ranking of predicted structural models and selecting the best model from a given candidate pool remain as open problems in the field of structural bioinformatics. The quality assessment (QA) methods used to address these problems can be grouped into two categories: consensus methods and single-model methods. Consensus methods in general perform better and attain higher correlation between predicted and true quality measures. However, these methods frequently fail to generate proper quality scores for native-like structures which are distinct from the rest of the pool. Conversely, single-model methods do not suffer from this drawback and are better suited for real-life applications where many models from various sources may not be readily available.

RESULTS

In this study, we developed a support-vector-machine-based single-model global quality assessment (SVMQA) method. For a given protein model, the SVMQA method predicts TM-score and GDT_TS score based on a feature vector containing statistical potential energy terms and consistency-based terms between the actual structural features (extracted from the three-dimensional coordinates) and predicted values (from primary sequence). We trained SVMQA using CASP8, CASP9 and CASP10 targets and determined the machine parameters by 10-fold cross-validation. We evaluated the performance of our SVMQA method on various benchmarking datasets. Results show that SVMQA outperformed the existing best single-model QA methods both in ranking provided protein models and in selecting the best model from the pool. According to the CASP12 assessment, SVMQA was the best method in selecting good-quality models from decoys in terms of GDTloss.

AVAILABILITY AND IMPLEMENTATION

SVMQA method can be freely downloaded from http://lee.kias.re.kr/SVMQA/SVMQA_eval.tar.gz.

CONTACT

jlee@kias.re.kr.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在结构生物信息学领域,预测结构模型的准确排序以及从给定的候选模型库中选择最佳模型仍然是尚未解决的问题。用于解决这些问题的质量评估(QA)方法可分为两类:共识方法和单模型方法。一般来说,共识方法表现更好,并且在预测质量度量和真实质量度量之间具有更高的相关性。然而,这些方法经常无法为与模型库中其他结构不同的天然样结构生成合适的质量分数。相反,单模型方法不存在这个缺点,并且更适合于实际应用,在这些应用中,可能无法轻易获得来自各种来源的许多模型。

结果

在本研究中,我们开发了一种基于支持向量机的单模型全局质量评估(SVMQA)方法。对于给定的蛋白质模型,SVMQA方法基于一个特征向量预测TM分数和GDT_TS分数,该特征向量包含统计势能项以及实际结构特征(从三维坐标中提取)和预测值(从一级序列中得到)之间基于一致性的项。我们使用CASP8、CASP9和CASP10目标训练SVMQA,并通过10折交叉验证确定机器参数。我们在各种基准数据集上评估了我们的SVMQA方法的性能。结果表明,SVMQA在对提供的蛋白质模型进行排序以及从模型库中选择最佳模型方面均优于现有的最佳单模型QA方法。根据CASP12评估,就GDT损失而言,SVMQA是从诱饵模型中选择高质量模型的最佳方法。

可用性和实现

SVMQA方法可从http://lee.kias.re.kr/SVMQA/SVMQA_eval.tar.gz免费下载。

联系方式

jlee@kias.re.kr

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验