Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Sci Rep. 2018 Dec 27;8(1):18084. doi: 10.1038/s41598-018-36343-x.
DNA double-strand breaks pose a direct threat to genomic stability. Studies of DNA damage and chromatin dynamics have yielded opposing results that support either increased or decreased chromatin motion after damage. In this study, we independently measure the dynamics of transcriptionally active or repressed chromatin regions using particle tracking microrheology. We find that the baseline motion of transcriptionally repressed regions of chromatin are significantly less mobile than transcriptionally active chromatin, which is statistically similar to the bulk motion of chromatin within the nucleus. Site specific DNA damage using KillerRed tags induced in loci within repressed chromatin causes an increased motion, while loci within transcriptionally active regions remains unchanged at similar time scales. We also observe a time-dependent response associated with a further increase in chromatin decondensation. Global induction of damage with bleocin displays similar trends of chromatin decondensation and increased mobility only at 53BP1-labeled damage sites but not at non-damaged sites, indicating that chromatin dynamics are tightly regulated locally after damage. These results shed light on the evolution of the local and global DNA damage response associated with chromatin remodeling and dynamics, with direct implications for their role in repair.
DNA 双链断裂对基因组稳定性构成直接威胁。对 DNA 损伤和染色质动力学的研究得出了相互矛盾的结果,这些结果要么支持损伤后染色质运动增加,要么支持染色质运动减少。在这项研究中,我们使用粒子追踪微流变学独立测量转录活跃或转录抑制染色质区域的动力学。我们发现,转录抑制染色质区域的基线运动明显比转录活跃染色质区域的运动性差,这在统计学上与核内染色质的整体运动相似。在抑制染色质内的基因座中使用 KillerRed 标签诱导的特定部位 DNA 损伤会导致运动增加,而在转录活跃区域的基因座在相似的时间尺度上保持不变。我们还观察到与染色质去浓缩的进一步增加相关的时变响应。使用 bleocin 对损伤的全局诱导显示出类似的染色质去浓缩和运动性增加的趋势,仅在 53BP1 标记的损伤部位,而不在未损伤部位,表明染色质动力学在损伤后局部受到严格调控。这些结果揭示了与染色质重塑和动力学相关的局部和全局 DNA 损伤反应的演变,对其在修复中的作用具有直接影响。