Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
Int J Mol Sci. 2021 Sep 20;22(18):10130. doi: 10.3390/ijms221810130.
Photodynamic therapy (PDT) is a clinical treatment for cancer or non-neoplastic diseases, and the photosensitizers (PSs) are crucial for PDT efficiency. The commonly used chemical PSs, generally produce ROS through the type II reaction that highly relies on the local oxygen concentration. However, the hypoxic tumor microenvironment and unavoidable dark toxicity of PSs greatly restrain the wide application of PDT. The genetically encoded PSs, unlike chemical PSs, can be modified using genetic engineering techniques and targeted to unique cellular compartments, even within a single cell. KillerRed, as a dimeric red fluorescent protein, can be activated by visible light or upconversion luminescence to execute the Type I reaction of PDT, which does not need too much oxygen and surely attract the researchers' focus. In particular, nanotechnology provides new opportunities for various modifications of KillerRed and versatile delivery strategies. This review more comprehensively outlines the applications of KillerRed, highlighting the fascinating features of KillerRed genes and proteins in the photodynamic systems. Furthermore, the advantages and defects of KillerRed are also discussed, either alone or in combination with other therapies. These overviews may facilitate understanding KillerRed progress in PDT and suggest some emerging potentials to circumvent challenges to improve the efficiency and accuracy of PDT.
光动力疗法(PDT)是一种治疗癌症或非肿瘤性疾病的临床方法,而光敏剂(PSs)是 PDT 效率的关键。常用的化学 PSs 通常通过高度依赖局部氧浓度的 II 型反应产生 ROS。然而,肿瘤微环境缺氧和 PSs 不可避免的暗毒性极大地限制了 PDT 的广泛应用。与化学 PSs 不同,基因编码的 PSs 可以通过基因工程技术进行修饰,并靶向到独特的细胞区室,甚至在单个细胞内。KillerRed 作为一种二聚体红色荧光蛋白,可以被可见光或上转换发光激活,从而执行 PDT 的 I 型反应,该反应不需要太多氧气,肯定会吸引研究人员的注意。特别是,纳米技术为 KillerRed 的各种修饰和多功能递药策略提供了新的机会。本文更全面地概述了 KillerRed 的应用,强调了 KillerRed 基因和蛋白在光动力系统中的迷人特征。此外,还讨论了 KillerRed 单独或与其他疗法联合使用的优缺点。这些综述可能有助于理解 PDT 中 KillerRed 的进展,并提出一些新的潜力来克服挑战,以提高 PDT 的效率和准确性。