Suppr超能文献

强烈噪声暴露后耳蜗核中的突触重组反应。

Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure.

机构信息

University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.

University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.

出版信息

Neuroscience. 2019 Feb 10;399:184-198. doi: 10.1016/j.neuroscience.2018.12.023. Epub 2018 Dec 26.

Abstract

The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28  d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.

摘要

蜗神经核位于脑干,仅接收同侧耳蜗听神经纤维的传入听觉输入。发生在听神经中的噪声诱导的神经退行性变化刺激蜗神经核中的一系列神经可塑性变化,导致突触结构和功能的重大变化。为了确定介导这种突触重组的一些关键分子机制,我们将大鼠单侧暴露于高强度噪声中,导致明显的听力损失,然后测量针对神经发生和突触重组的突触可塑性基因阵列的结果变化。我们使用 PCR 基因阵列在暴露侧和未暴露侧比较了背侧蜗神经核(DCN)和腹侧蜗神经核(VCN)在暴露后 2 d(早期)和 28 d(晚期)的基因表达模式。我们发现了许多差异表达的基因,特别是那些与突触发生和再生有关的基因。VCN 中的基因表达变化比 DCN 更频繁,并且在 28 d 后比 2 d 后观察到更多的变化。我们通过原位杂交技术验证了 PCR 结果,用于检测脑源性神经营养因子(Bdnf)、 Homer-1 以及谷氨酸 NMDA 受体 Grin1,所有这些都参与了神经发生和可塑性。这些结果表明,Bdnf、 Homer-1 和 Grin1 在严重噪声诱导的传入变性后在蜗神经核中的突触重塑和动态平衡中发挥重要作用。

相似文献

1
Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure.
Neuroscience. 2019 Feb 10;399:184-198. doi: 10.1016/j.neuroscience.2018.12.023. Epub 2018 Dec 26.
5
Activity-dependent plasticity in the adult auditory brainstem.
Audiol Neurootol. 2001 Nov-Dec;6(6):319-45. doi: 10.1159/000046844.
6
Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss.
Eur J Neurosci. 2008 Jan;27(1):155-68. doi: 10.1111/j.1460-9568.2007.05983.x.
8
Transcriptional profile changes caused by noise-induced tinnitus in the cochlear nucleus and inferior colliculus of the rat.
Ann Med. 2024 Dec;56(1):2402949. doi: 10.1080/07853890.2024.2402949. Epub 2024 Sep 13.
9
Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
Acta Otolaryngol. 2015;135(11):1093-102. doi: 10.3109/00016489.2015.1061699. Epub 2015 Jul 3.
10
Trauma-specific insults to the cochlear nucleus in the rat.
J Neurosci Res. 2012 Oct;90(10):1924-31. doi: 10.1002/jnr.23093. Epub 2012 Jun 20.

引用本文的文献

1
Identification and quantification of GABA R-α1-positive cells in the DCN of rats with behavioral evidence of noise-induced tinnitus.
IBRO Neurosci Rep. 2025 Jul 16;19:332-344. doi: 10.1016/j.ibneur.2025.07.005. eCollection 2025 Dec.
2
Candidate Key Proteins of Tinnitus in the Auditory and Motor Systems of the Thalamus.
Int J Mol Sci. 2025 Jun 17;26(12):5804. doi: 10.3390/ijms26125804.
3
NMDA Receptors: Next therapeutic targets for Tinnitus?
Biochem Biophys Rep. 2025 Apr 26;42:102029. doi: 10.1016/j.bbrep.2025.102029. eCollection 2025 Jun.
6
Candidate Key Proteins in Tinnitus-A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus.
Biomedicines. 2024 Jul 19;12(7):1615. doi: 10.3390/biomedicines12071615.
7
Transcriptional response to mild therapeutic hypothermia in noise-induced cochlear injury.
Front Neurosci. 2024 Jan 17;17:1296475. doi: 10.3389/fnins.2023.1296475. eCollection 2023.
10
Regulation of auditory plasticity during critical periods and following hearing loss.
Hear Res. 2020 Nov;397:107976. doi: 10.1016/j.heares.2020.107976. Epub 2020 Apr 20.

本文引用的文献

2
Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease.
Semin Cell Dev Biol. 2018 May;77:51-62. doi: 10.1016/j.semcdb.2017.09.035. Epub 2017 Oct 14.
3
Plastic changes along auditory pathway during salicylate-induced ototoxicity: Hyperactivity and CF shifts.
Hear Res. 2017 Apr;347:28-40. doi: 10.1016/j.heares.2016.10.021. Epub 2016 Oct 27.
5
Noise-induced hearing loss: Neuropathic pain via Ntrk1 signaling.
Mol Cell Neurosci. 2016 Sep;75:101-12. doi: 10.1016/j.mcn.2016.07.005. Epub 2016 Jul 26.
7
Effects of acoustic trauma on the auditory system of the rat: The role of microglia.
Neuroscience. 2015 Sep 10;303:299-311. doi: 10.1016/j.neuroscience.2015.07.004. Epub 2015 Jul 8.
8
Early growth response 1 (Egr-1) directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus.
J Neurochem. 2015 May;133(4):489-500. doi: 10.1111/jnc.13077. Epub 2015 Mar 11.
9
Central gain control in tinnitus and hyperacusis.
Front Neurol. 2014 Oct 24;5:206. doi: 10.3389/fneur.2014.00206. eCollection 2014.
10
Prolonged noise exposure-induced auditory threshold shifts in rats.
Hear Res. 2014 Nov;317:1-8. doi: 10.1016/j.heares.2014.08.004. Epub 2014 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验