National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China.
Key Laboratory of Intelligent Optical Sensing and Manipulation , Ministry of Education , Nanjing 210093 , China.
Nano Lett. 2019 Feb 13;19(2):1158-1165. doi: 10.1021/acs.nanolett.8b04571. Epub 2019 Jan 8.
Bending light along arbitrary curvatures is a captivating and popular notion, triggering unprecedented endeavors in achieving diffraction-free propagation along a curved path in free-space. Much effort has been devoted to achieving this goal in homogeneous space, which solely relies on the transverse acceleration of beam centroid exerted by a beam generator. Here, based on an all-dielectric metasurface, we experimentally report a synthetic strategy of encoding and multiplexing acceleration features on a freely propagating light beam, synergized with photonic spin states of light. Independent switching between two arbitrary visible accelerating light beams with distinct acceleration directions and caustic trajectories is achieved. This proof-of-concept recipe demonstrates the strength of the designed metasurface chip: subwavelength pixel size, independent control over light beam curvature, broadband operation in the visible, and ultrathin scalable planar architecture. Our results open up the possibility of creating ultracompact, high-pixel density, and flat-profile nanophotonic platforms for efficient generation and dynamical control of structured light beams.
沿着任意曲率弯曲光线是一种迷人且流行的概念,它引发了人们前所未有的努力,以实现沿着自由空间中的弯曲路径无衍射传播。人们在各向同性空间中投入了大量精力来实现这一目标,而这仅依赖于光束发生器对光束质心的横向加速度的作用。在这里,基于全介质超表面,我们通过实验报告了一种在自由传播光束上对加速度特征进行编码和复用的综合策略,该策略与光的光子自旋态协同作用。我们实现了两个具有不同加速度方向和焦散轨迹的任意可见加速光束之间的独立切换。这一概念验证方案展示了所设计的超表面芯片的优势:亚波长像素尺寸、对光束曲率的独立控制、在可见光波段的宽带操作以及超薄可扩展的平面架构。我们的研究结果为创建超紧凑、高密度像素和平面轮廓的纳米光子平台以高效生成和动态控制结构光束提供了可能性。