Suppr超能文献

凝聚素依赖性染色质紧缩在静止期全局抑制转录。

Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence.

机构信息

Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

Genome Sciences, University of Washington, Seattle, WA 98195, USA.

出版信息

Mol Cell. 2019 Feb 7;73(3):533-546.e4. doi: 10.1016/j.molcel.2018.11.020. Epub 2018 Dec 27.

Abstract

Quiescence is a stress-resistant state in which cells reversibly exit the cell cycle and suspend most processes. Quiescence is essential for stem cell maintenance, and its misregulation is implicated in tumor formation. One of the hallmarks of quiescent cells is highly condensed chromatin. Because condensed chromatin often correlates with transcriptional silencing, it has been hypothesized that chromatin compaction represses transcription during quiescence. However, the technology to test this model by determining chromatin structure within cells at gene resolution has not previously been available. Here, we use Micro-C XL to map chromatin contacts at single-nucleosome resolution genome-wide in quiescent Saccharomyces cerevisiae cells. We describe chromatin domains on the order of 10-60 kilobases that, only in quiescent cells, are formed by condensin-mediated loops. Condensin depletion prevents the compaction of chromatin within domains and leads to widespread transcriptional de-repression. Finally, we demonstrate that condensin-dependent chromatin compaction is conserved in quiescent human fibroblasts.

摘要

静止是一种抗应激状态,在此状态下细胞可逆地退出细胞周期并暂停大多数进程。静止对于干细胞维持至关重要,其失调与肿瘤形成有关。静止细胞的特征之一是染色质高度浓缩。由于浓缩的染色质通常与转录沉默相关,因此人们假设染色质紧缩在静止期间抑制转录。然而,以前没有可用的技术通过确定细胞内基因分辨率的染色质结构来测试该模型。在这里,我们使用 Micro-C XL 在静止的酿酒酵母细胞中以单核小体分辨率全基因组范围绘制染色质接触图。我们描述了大约 10-60 千碱基的染色质域,这些域仅在静止细胞中,由凝聚素介导的环形成。凝聚素耗竭可防止域内染色质的紧缩,并导致广泛的转录去阻遏。最后,我们证明了在静止的人成纤维细胞中,凝聚素依赖性染色质紧缩是保守的。

相似文献

1
Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence.
Mol Cell. 2019 Feb 7;73(3):533-546.e4. doi: 10.1016/j.molcel.2018.11.020. Epub 2018 Dec 27.
2
Unraveling quiescence-specific repressive chromatin domains.
Curr Genet. 2019 Oct;65(5):1145-1151. doi: 10.1007/s00294-019-00985-9. Epub 2019 May 4.
4
SMC complexes differentially compact mitotic chromosomes according to genomic context.
Nat Cell Biol. 2017 Sep;19(9):1071-1080. doi: 10.1038/ncb3594. Epub 2017 Aug 21.
5
Cdc48/VCP Promotes Chromosome Morphogenesis by Releasing Condensin from Self-Entrapment in Chromatin.
Mol Cell. 2018 Feb 15;69(4):664-676.e5. doi: 10.1016/j.molcel.2018.01.030.
6
The budding yeast transition to quiescence.
Yeast. 2021 Jan;38(1):30-38. doi: 10.1002/yea.3546. Epub 2021 Jan 8.
7
Condensin Depletion Causes Genome Decompaction Without Altering the Level of Global Gene Expression in .
Genetics. 2018 Sep;210(1):331-344. doi: 10.1534/genetics.118.301217. Epub 2018 Jul 3.
9
RSC primes the quiescent genome for hypertranscription upon cell-cycle re-entry.
Elife. 2021 May 27;10:e67033. doi: 10.7554/eLife.67033.
10
Cdc14 and Chromosome Condensation: Evaluation of the Recruitment of Condensin to Genomic Regions.
Methods Mol Biol. 2017;1505:229-243. doi: 10.1007/978-1-4939-6502-1_17.

引用本文的文献

1
Decoding the adaptive survival mechanisms of breast cancer dormancy.
Oncogene. 2025 Aug 27. doi: 10.1038/s41388-025-03529-3.
2
Starvation activates ECM-remodeling gene transcription and putative enhancers in fibroblasts despite inducing quiescence.
Cell Rep. 2025 Jul 22;44(7):115896. doi: 10.1016/j.celrep.2025.115896. Epub 2025 Jun 24.
3
Stage-specific MCM protein expression in : insights into metacyclogenesis and G1 arrested epimastigotes.
Front Cell Infect Microbiol. 2025 May 26;15:1584812. doi: 10.3389/fcimb.2025.1584812. eCollection 2025.
4
ChIP-seq Data Processing and Relative and Quantitative Signal Normalization for .
Bio Protoc. 2025 May 5;15(9):e5299. doi: 10.21769/BioProtoc.5299.
5
Low overlap of transcription factor DNA binding and regulatory targets.
Nature. 2025 Apr 16. doi: 10.1038/s41586-025-08916-0.
6
Parasitic plasmids are anchored to inactive regions of eukaryotic chromosomes through a nucleosome signal.
EMBO J. 2025 Apr;44(7):2134-2156. doi: 10.1038/s44318-025-00389-1. Epub 2025 Feb 27.
7
Sir2 is required for the quiescence-specific condensed three-dimensional chromatin structure of rDNA.
bioRxiv. 2024 Dec 12:2024.12.12.628092. doi: 10.1101/2024.12.12.628092.
9
Condensin I folds the Caenorhabditis elegans genome.
Nat Genet. 2024 Aug;56(8):1737-1749. doi: 10.1038/s41588-024-01832-5. Epub 2024 Jul 22.
10
Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements.
Cell Mol Life Sci. 2024 Jun 20;81(1):274. doi: 10.1007/s00018-024-05314-z.

本文引用的文献

2
A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.
Nat Commun. 2018 Apr 13;9(1):1444. doi: 10.1038/s41467-018-03614-0.
3
Taking cohesin and condensin in context.
PLoS Genet. 2018 Jan 25;14(1):e1007118. doi: 10.1371/journal.pgen.1007118. eCollection 2018 Jan.
5
Preparation and Analysis of Saccharomyces cerevisiae Quiescent Cells.
Methods Mol Biol. 2018;1686:125-135. doi: 10.1007/978-1-4939-7371-2_9.
6
Architectural alterations of the fission yeast genome during the cell cycle.
Nat Struct Mol Biol. 2017 Nov;24(11):965-976. doi: 10.1038/nsmb.3482. Epub 2017 Oct 9.
8
HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient.
Genome Res. 2017 Nov;27(11):1939-1949. doi: 10.1101/gr.220640.117. Epub 2017 Aug 30.
9
The Yeast Genomes in Three Dimensions: Mechanisms and Functions.
Annu Rev Genet. 2017 Nov 27;51:23-44. doi: 10.1146/annurev-genet-120116-023438. Epub 2017 Aug 30.
10
Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast.
Nat Genet. 2017 Oct;49(10):1553-1557. doi: 10.1038/ng.3938. Epub 2017 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验