Suppr超能文献

黎曼氏普罗克鲁斯分析:脑机接口的迁移学习。

Riemannian Procrustes Analysis: Transfer Learning for Brain-Computer Interfaces.

出版信息

IEEE Trans Biomed Eng. 2019 Aug;66(8):2390-2401. doi: 10.1109/TBME.2018.2889705. Epub 2018 Dec 25.

Abstract

OBJECTIVE

This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user.

METHOD

We propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling, and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes analysis (RPA). We assess the improvement in transfer learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total).

RESULTS

Our results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA.

CONCLUSION AND SIGNIFICANCE

We present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.

摘要

目的

本文提出了一种迁移学习方法,用于处理在不同会话和/或不同受试者上记录的脑电图(EEG)信号的统计可变性。这是脑机接口(BCI)面临的常见问题,对于试图重用以前记录的数据以避免新用户或同一用户的新会话进行校准阶段的系统来说是一个挑战。

方法

我们提出了一种基于普罗克鲁斯分析的方法,用于使用数据点上的简单几何变换(平移、缩放和旋转)匹配两个数据集的统计分布。我们使用对称正定矩阵(SPD)作为描述 EEG 信号的统计特征,因此数据点上的几何操作尊重 SPD 流形的内在几何。由于其具有几何感知的性质,我们将我们的方法称为黎曼普罗克鲁斯分析(RPA)。我们通过在模拟数据和八个公开可用的 BCI 数据集(总共 243 个受试者)上执行分类任务来评估通过 RPA 进行迁移学习的改进。

结果

我们的结果表明,与文献中提出的其他具有几何感知的方法相比,RPA 的分类准确性更高。当通过 RPA 匹配数据集的统计信息时,我们还观察到集合分类策略的改进。

结论和意义

我们提出了一种简单而强大的方法来匹配两个数据集的统计分布,从而为能够重用以前会话数据并避免校准过程的 BCI 系统铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验