文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

迁移学习促进个体脑机接口技能的习得。

Transfer learning promotes acquisition of individual BCI skills.

作者信息

Kumar Satyam, Alawieh Hussein, Racz Frigyes Samuel, Fakhreddine Rawan, Millán José Del R

机构信息

Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

PNAS Nexus. 2024 Feb 16;3(2):pgae076. doi: 10.1093/pnasnexus/pgae076. eCollection 2024 Feb.


DOI:10.1093/pnasnexus/pgae076
PMID:38426121
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10903645/
Abstract

Subject training is crucial for acquiring brain-computer interface (BCI) control. Typically, this requires collecting user-specific calibration data due to high inter-subject neural variability that limits the usability of generic decoders. However, calibration is cumbersome and may produce inadequate data for building decoders, especially with naïve subjects. Here, we show that a decoder trained on the data of a single expert is readily transferrable to inexperienced users via domain adaptation techniques allowing calibration-free BCI training. We introduce two real-time frameworks, (i) Generic Recentering (GR) through unsupervised adaptation and (ii) Personally Assisted Recentering (PAR) that extends GR by employing supervised recalibration of the decoder parameters. We evaluated our frameworks on 18 healthy naïve subjects over five online sessions, who operated a customary synchronous bar task with continuous feedback and a more challenging car racing game with asynchronous control and discrete feedback. We show that along with improved task-oriented BCI performance in both tasks, our frameworks promoted subjects' ability to acquire individual BCI skills, as the initial neurophysiological control features of an expert subject evolved and became subject specific. Furthermore, those features were task-specific and were learned in parallel as participants practiced the two tasks in every session. Contrary to previous findings implying that supervised methods lead to improved online BCI control, we observed that longitudinal training coupled with unsupervised domain matching (GR) achieved similar performance to supervised recalibration (PAR). Therefore, our presented frameworks facilitate calibration-free BCIs and have immediate implications for broader populations-such as patients with neurological pathologies-who might struggle to provide suitable initial calibration data.

摘要

主题训练对于获取脑机接口(BCI)控制至关重要。通常,由于个体间神经变异性较高,限制了通用解码器的可用性,这就需要收集特定用户的校准数据。然而,校准过程繁琐,可能会产生用于构建解码器的数据不足的情况,尤其是对于新手受试者。在此,我们表明,通过领域自适应技术,在单个专家数据上训练的解码器可以很容易地转移到没有经验的用户身上,从而实现无需校准的BCI训练。我们引入了两个实时框架,(i)通过无监督自适应的通用重新定位(GR)和(ii)通过对解码器参数进行监督重新校准来扩展GR的个人辅助重新定位(PAR)。我们在18名健康新手受试者身上进行了五个在线阶段的评估,他们操作了一个带有连续反馈的传统同步条任务以及一个具有异步控制和离散反馈的更具挑战性的赛车游戏。我们表明,随着两项任务中面向任务的BCI性能的提高,我们的框架提升了受试者获取个体BCI技能的能力,因为专家受试者的初始神经生理控制特征不断演变并变得具有个体特异性。此外,这些特征是特定于任务的,并且在参与者每次训练两项任务时并行学习。与之前暗示监督方法可改善在线BCI控制的研究结果相反,我们观察到纵向训练与无监督领域匹配(GR)相结合取得了与监督重新校准(PAR)相似的性能。因此,我们提出的框架促进了无需校准的BCI,并对更广泛的人群(如患有神经病理学疾病的患者)具有直接意义,这些人群可能难以提供合适的初始校准数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/60d56be9026a/pgae076f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/8f47ddce2129/pgae076f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/0b812f34b5bf/pgae076f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/796386aca12f/pgae076f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/4f5e5eb9e2aa/pgae076f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/7af0f881bc05/pgae076f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/22e6e4c528c8/pgae076f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/60d56be9026a/pgae076f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/8f47ddce2129/pgae076f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/0b812f34b5bf/pgae076f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/796386aca12f/pgae076f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/4f5e5eb9e2aa/pgae076f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/7af0f881bc05/pgae076f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/22e6e4c528c8/pgae076f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b4/10903645/60d56be9026a/pgae076f7.jpg

相似文献

[1]
Transfer learning promotes acquisition of individual BCI skills.

PNAS Nexus. 2024-2-16

[2]
Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface.

bioRxiv. 2024-4-25

[3]
Unsupervised adaptation of an ECoG based brain-computer interface using neural correlates of task performance.

Sci Rep. 2022-12-9

[4]
Machine-learning-based coadaptive calibration for brain-computer interfaces.

Neural Comput. 2011-3

[5]
Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.

Front Hum Neurosci. 2021-3-18

[6]
Long-Term Mutual Training for the CYBATHLON BCI Race With a Tetraplegic Pilot: A Case Study on Inter-Session Transfer and Intra-Session Adaptation.

Front Hum Neurosci. 2021-2-26

[7]
Continuous tracking using deep learning-based decoding for noninvasive brain-computer interface.

PNAS Nexus. 2024-4-30

[8]
Neural correlates of user learning during long-term BCI training for the Cybathlon competition.

J Neuroeng Rehabil. 2022-7-5

[9]
Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

J Neural Eng. 2014-6

[10]
Self-calibration algorithm in an asynchronous P300-based brain-computer interface.

J Neural Eng. 2014-6

引用本文的文献

[1]
Public Perception of the Brain-Computer Interface Based on a Decade of Data on X: Mixed Methods Study.

JMIR Form Res. 2025-6-25

[2]
Electrical spinal cord stimulation promotes focal sensorimotor activation that accelerates brain-computer interface skill learning.

Proc Natl Acad Sci U S A. 2025-6-17

[3]
Learning to operate an imagined speech Brain-Computer Interface involves the spatial and frequency tuning of neural activity.

Commun Biol. 2025-2-20

[4]
Master classes of the tenth international brain-computer interface meeting: showcasing the research of BCI trainees.

J Neural Eng. 2025-2-28

[5]
Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time.

Brain Stimul. 2025

[6]
Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time.

bioRxiv. 2024-8-19

[7]
Combining detrended cross-correlation analysis with Riemannian geometry-based classification for improved brain-computer interface performance.

Front Neurosci. 2024-3-14

本文引用的文献

[1]
Learning to control a BMI-driven wheelchair for people with severe tetraplegia.

iScience. 2022-11-18

[2]
Neural correlates of user learning during long-term BCI training for the Cybathlon competition.

J Neuroeng Rehabil. 2022-7-5

[3]
Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.

Front Hum Neurosci. 2021-3-18

[4]
Long-Term Mutual Training for the CYBATHLON BCI Race With a Tetraplegic Pilot: A Case Study on Inter-Session Transfer and Intra-Session Adaptation.

Front Hum Neurosci. 2021-2-26

[5]
Plug-and-play control of a brain-computer interface through neural map stabilization.

Nat Biotechnol. 2021-3

[6]
Context-Aware Learning for Generative Models.

IEEE Trans Neural Netw Learn Syst. 2021-8

[7]
Noninvasive neuroimaging enhances continuous neural tracking for robotic device control.

Sci Robot. 2019-6-26

[8]
Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach.

IEEE Trans Biomed Eng. 2019-4-29

[9]
Riemannian Procrustes Analysis: Transfer Learning for Brain-Computer Interfaces.

IEEE Trans Biomed Eng. 2018-12-25

[10]
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.

J Neural Eng. 2018-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索